Cloud Effects on the Ocean Surface Energy Budget

  • David A. Randall
  • Laura D. Fowler
  • Donald A. Dazlich
Conference paper
Part of the NATO ASI Series book series (volume 34)


Although coupled ocean-atmosphere modeling was born about 25 years ago (Manabe and Bryan 1969), the field is just now entering (a somewhat late) adolescence, characterized by exciting new experiences (Stouffer et al. 1994), uncooperative and troublesome model behavior (Robertson et al. 1994), and dreams of future maturity (e.g. Trenberth 1992).


Atmospheric General Circulation Model Hadley Circulation Cumulus Parameterization Stratiform Cloud Atmospheric Model Intercomparison Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fowler LD, Randall DA, and Rutledge SA (1995) Liquid and ice cloud microphysics in the CSU general circulation model. Part 1: Model description and simulated microphysical processes. Submitted to J Climate Google Scholar
  2. Fowler LD, and Randall DA (1995) Liquid and ice cloud microphysics in the CSU general circulation model. Part 2: Simulation of the Earth’s radiation budget. Submitted to J ClimateGoogle Scholar
  3. Gates WL (1992): The Atmospheric Model Intercomparison Project (AMIP). Bull Amer Met Soc 73: 1962CrossRefGoogle Scholar
  4. Gleckler PJ, Randall DA, Boer G, Colman R, Dix M, Galin V, Helfand M, Kiehl J, Kitoh A, Lau W, Liang X-Z, Lykossov V, McAvaney B, Miyakoda K, Planton S, and Stern W (1994) Interpretation of ocean energy transports implied by atmospheric general circulation models. To appear in Geophysical Research LettersCrossRefGoogle Scholar
  5. Harshvardhan, Randall DA, Corsetti TG, Dazlich DA (1989) Earth radiation budget and cloudiness simulations with a general circulation model. J Atmos Sci 46:1922–1942CrossRefGoogle Scholar
  6. Lin, Y-L, Farley RD, and Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteor 22:1065–1092CrossRefGoogle Scholar
  7. Manabe S, and Bryan K (1969) Climate calculation with a combined ocean-atmosphere model. J Atmos Sci 26:786–789CrossRefGoogle Scholar
  8. Neelin JD, Latif M, Allaart MAF, Cane MA, Cubasch U, Gates WL, Gent PR, Ghil M, Gordon C, Lau NC, Mechoso CR, Meehl GA, Oberhuber JM, Philander SGH, Schopf PS, Sperber KR, Sterl A, Tokioka T, Tribbia J, and Zebiak SE (1992) Tropical air-sea interaction in general circulation models. Clim Dyn 7:73–104CrossRefGoogle Scholar
  9. Ramanathan V, and Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino. Nature 351:27–32CrossRefGoogle Scholar
  10. Randall DA, Harshvardhan, Dazlich DA, and Corsetti TG (1989) Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J Atmos Sci 46:1943–1970CrossRefGoogle Scholar
  11. Randall DA, Harshvardhan, and Dazlich DA (1991) Diurnal variability of the hydrologic cycle in a general circulation model. J Atmos Sci 48:40–62CrossRefGoogle Scholar
  12. Randall DA, and Pan D-M (1993) Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In Cumulus Parameterization, a Meteorological Monograph published by the American Meteorological Society, Emanuel K and Raymond D (Eds) pp 137–144Google Scholar
  13. Randall DA, Sellers PJ, Berry JA, Dazlich DA, Zhang C, Collatz JA, Denning AS, Los SO, Field CB, Fung I, Justice CO, and Tucker CJ (1995) A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 3: The greening of the CSU General Circulation Model. Submitted to the J ClimateGoogle Scholar
  14. Robertson AW, Ma C-C, Mechoso CR, and Ghil M (1994) Simulation of the tropical-Pacific climate with a coupled ocean-atmosphere general circulation model. Part I: The seasonal cycle. To appear in J ClimateGoogle Scholar
  15. Rutledge SA, and Hobbs PV(1983) The mesoscale and microscale structure and organization of cloud bands and precipitation in midlatitude cyclone. VIII: A model for the “Seeder Feeder” process in warm-frontal bands. J Atmos Sci 40:1185–1206CrossRefGoogle Scholar
  16. Sellers PJ, Randall DA, Collatz GJ, Berry J, Field C, Dazlich DA, Zhang C, (1995 a) A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. Submitted to J. ClimateGoogle Scholar
  17. Sellers PJ, Los SO, Tucker CJ, Justice CO, Dazlich DA, Collatz GJ, and Randall DA(1995 b) A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 2: The generation of global fields of terrestrial biophysical parameters from satellite data. Submitted to J. ClimateGoogle Scholar
  18. Semtner AJ Jr, and Chervin RM, (1992) Ocean general circulation from a global eddy-resolving model. J Geophys Res 97C:5493–5551CrossRefGoogle Scholar
  19. Slingo A, and Slingo JM, (1988) The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart J Roy Meteor Soc 114:1027–1062CrossRefGoogle Scholar
  20. Stephens GL, and Webster PJ (1979) Sensitivity of radiative forcing to variable cloud and moisture. J Atmos Sci 36:1542–1556CrossRefGoogle Scholar
  21. Stouffer RJ, Manabe S, and Vinnikov KY (1994) Model assessment of the role of natural variability in recent global warming. Nature 367:634–636CrossRefGoogle Scholar
  22. Trenberth KE (Ed) (1992) Climate system modeling. Cambridge University Press, 788 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • David A. Randall
    • 1
  • Laura D. Fowler
    • 1
  • Donald A. Dazlich
    • 1
  1. 1.Department of Atmospheric ScienceColorado State UniversityFort CollinsUSA

Personalised recommendations