The Central Equatorial Pacific Experiment

  • W. D. Collins
  • V. Ramanathan
  • P. J. Crutzen
  • A. Heymsfield
  • J. P. Kuettner
  • D. Kley
  • R. L. Grossman
  • R. T. Pierrehumbert
Conference paper
Part of the NATO ASI Series book series (volume 35)


The tropical Pacific Ocean exhibits several intriguing features. For nearly 50% of the tropical Pacific (30°N to 30°S), sea-surface temperatures (SSTs) are within a narrow range between 300 K and 303 K, and less than 0.01% of the ocean surface has SSTs in excess of 304 K (Figure 1). Furthermore, deep convection is triggered only when SSTs exceed 300 K. In regions of deep convection and warm SST, the reduction of outgoing longwave energy by the atmospheric water vapor increases so rapidly with SST that it exceeds the rate of increase of blackbody surface emission. Thus the surface-atmosphere system in the warm pool loses its ability to radiate excess energy to space. Without some negative feedback process, the greenhouse effect would produce a runaway warming. Ramanathan and Collins [1991] (hereafter RC) found that the warm ocean is also covered by thick cirrus anvil clouds, which reflect a significant amount of solar energy back to space. They concluded that the anvils produced by deep convection act like a thermostat to regulate the flow of solar energy to the ocean.


Water Vapor Deep Convection Atmospheric Temperature Warm Pool Surface Energy Budget 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Gadgil, S., P. V. Joseph, and N. V. Joshi, Ocean-atmosphere coupling over monsoon regions, Nature, 312, 141–143, 1984.CrossRefGoogle Scholar
  2. Graham, N. E., and T. P. Barnett, Sea surface temperature, surface wind divergence, and convection over tropical oceans, Science, 238, 657–659, 1987.CrossRefGoogle Scholar
  3. Hallberg, R., and A. K. Inamdar, Observations of seasonal variations in atmospheric greenhouse trapping and its enhancement at high sea surface temperature, J. Climate, 6, 920–931, 1993.CrossRefGoogle Scholar
  4. Harshvardhan, D. A. Randall, and D. A. Dazlich, Relationship between the longwave cloud radiative forcing at the surface and the top of the atmosphere, J. Climate, 3, 1435–1443, 1990.CrossRefGoogle Scholar
  5. Kneizys, F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and A. A. Clough, Users Guide to Lowtran 7. Air Force Geophysics Lab., 1988, Rep. AFGL-TR-88–0177.Google Scholar
  6. Lubin, D., The role of the tropical super greenhouse effect in heating the ocean surface, Science, 265, 224–227, 1994.CrossRefGoogle Scholar
  7. Minschwaner, K., and M. B. McElroy, A model for the energy budget of the atmosphere: Comparison with data from the Earth Radiation Budget Experiment, Planet. Space Sci., 40, 1237–1250, 1992.CrossRefGoogle Scholar
  8. Newell, R. E., Climate and the ocean, Am. Sci., 67, 405–416, 1979.Google Scholar
  9. Niiler, P. P., and J. Stevenson, The heat budget of the tropical ocean warm-water pools, J. Marine Research, 4O (Supplement), 465–480, 1982.Google Scholar
  10. Ramanathan, V., and W. Collins, Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño, Nature, 351, 27–32, 1991.CrossRefGoogle Scholar
  11. Ramanathan, V., R. Dirks, R. Grossman, A. Heymsfield, J. Kuettner, and F. Valero, Central Equatorial Pacific Experiment Design. Center for Clouds, Chemistry, and Climate, University of California, San Diego, CA 92093, 1993.Google Scholar
  12. Slingo, A., and J. M. Slingo, The response of a general circulation model to cloud longwave radiative forcing. Part I: Introduction and initial experiment, Quart. J. R. MeteoroL Soc, II4, 1027–1062, 1988.Google Scholar
  13. Smit, H., S. Gilge, and D. Kley, The meridional distribution of ozone and water vapor over the Atlantic Ocean between 30S and 52N in September/October 1988, in Physicochemical behavior of atmospheric pollutants, edited by G. Restelli and G. Angeletti, 736 pp., Kluwer Academic Publishers, Dordrecht, 1990Google Scholar
  14. Smit, H., D. Kley, H. Voemel, and S. Oltmans, Longitudinal vertical distribution of tropospheric ozone and its correlation with water vapor over the equatorial Pacific Ocean between 160E and 160W, EOS, 74, 115, 1993.CrossRefGoogle Scholar
  15. Stephens, G. L., and P. J. Webster, Cloud decoupling of the surface and planetary radiative budgets, J. Atmos. Sci., 41, 681–686, 1984.CrossRefGoogle Scholar
  16. Sun, D. Z., and R. S. Lindzen, Distribution of tropical tropospheric water vapor, J. Atmos. Sci., 50, 1643–1660, 1993.CrossRefGoogle Scholar
  17. Valero, F. P. J., P. Pilewskie, and A. Bucholz, Determination of the clear-sky greenhouse trapping of infrared radiation from multi-level aircraft measurements over the central equatorial Pacific, EOS, 74, 107, 1993.Google Scholar
  18. Vonder Haar, T. H. 1986. Surface radiation budget observations and analysis, in Surface radiation budget for climate applications, 87–101, NASA Ref. Pub. 1169.Google Scholar
  19. Waliser, D.E., and N. E. Graham, Convective cloud systems and warm-pool sea surface temperatures — coupled interactions and self-regulation, J. Geophys. Res, 98, 12881–12893, 1993.CrossRefGoogle Scholar
  20. Young, G. S., D. V. Ledvina, and C. W. Fairall, Influence of precipitating convection on the surface energy budget observed during a Tropical Ocean Global Atmosphere pilot cruise in the tropical western Pacific ocean, J. Geophys. Res., 97, 9595–9603, 1992.CrossRefGoogle Scholar
  21. Zhang, C, Large scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics, J. Climate, 6, 1898–1913, 1993.CrossRefGoogle Scholar
  22. Zhang, G. J., and R. L. Grossman. March, 1995. Surface evaporation during the Central Equatorial Pacific Experiment: A climate scale perspective, submitted to J. Climate.Google Scholar
  23. Boer, G.J. 1993: Climate change and the regulation of surface moisture and energy budgets. Climate Dynamics 8,225–239.CrossRefGoogle Scholar
  24. Emanuel, K. 1991: A scheme for representing cumulus convection in large scale models. J. Atmos. Sci 48, 2313–2333.CrossRefGoogle Scholar
  25. Ingersoll, A. P., 1969: The runaway greenhouse: A history of water on Venus. J. Atmos. Sci 26,1191–1198.CrossRefGoogle Scholar
  26. Kombayashi, M. 1967: Discrete equilibrium temperatures of a hypothetical planet with the atmosphere and the hydrosphere of one component-two phase system under constant solar radiation. J. Meteor. Soc. Japan,45,137–138.Google Scholar
  27. Lindzen, R. S., Hou, A. Y. and Farrel, B. F. 1982: The role of convective model choice in calculating the climate impact of doubling CO2 J. Atmos. Sci 39, 1189–1205.CrossRefGoogle Scholar
  28. Newell, R. E. 1979: Climate and the ocean, Am. Sci.,67 405–416.Google Scholar
  29. Peixoto, J. and Oort, A. 1992: Physics of Climate. New York. Amer. Inst. Physics, 520pp.Google Scholar
  30. Pierrehumbert, R. T. 1995: Thermostats, Radiator Fins, and the Local Runaway Greenhouse. J. Atmos. Sci. 52,1784–1806.CrossRefGoogle Scholar
  31. Ramanathan, V., Cess, R.D., Harrison, E.F., Minnis, P., Barkstrom, B.R., Ahmad, E. and Hartman, D. 1989: Cloud-radiative forcing and the climate: Results from the Earth Radiation Budget Experiment. Science 243,57–63.CrossRefGoogle Scholar
  32. Ramanathan, V. and Collins, W. 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351,27–32.CrossRefGoogle Scholar
  33. Ramanathan V., Subasilar B., Zhang G.J., Conant W., Cess R.D., Kiehl J.T., Grassl H., and Shi L. 1995: Warm pool heat-budget and shortwave cloud forcing — A missing physics? Science 267, 499–503.CrossRefGoogle Scholar
  34. Renno, N., Stone, P.H., and Emanuel, K. 1994: A radiative-convective model with an explicit hydrological cycle, Part II: Sensitivity to large changes in Solar forcing. J. Geophys. Res. (in press).Google Scholar
  35. Sun, D-Z, and Lindzen, R. S. 1993: Water vapor feedback and the ice age snowline record. Ann. Geophysicae 11, 204–215.Google Scholar
  36. Waliser, D. and Graham, N. 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res. 96,15311–15324.Google Scholar
  37. Washington, W. M. and Meehl, G.A 1993: Greenhouse sensitivity experiments with penetrative cumulus convection and tropical cirrus albedo effects. Climate Dynamics 8, 211–223.CrossRefGoogle Scholar
  38. Zhang, G. and McPhaden, M. 1995: On the relationship between sea surface termperature and latent heat flux in the Equatorial Pacific. J. Climate, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • W. D. Collins
    • 1
  • V. Ramanathan
    • 1
  • P. J. Crutzen
    • 1
    • 2
  • A. Heymsfield
    • 1
    • 3
  • J. P. Kuettner
    • 3
  • D. Kley
    • 1
    • 4
  • R. L. Grossman
    • 5
  • R. T. Pierrehumbert
    • 6
  1. 1.Center for Clouds, Chemistry and ClimateScripps Institution of OceanographyUSA
  2. 2.Max-Planck-Institut für ChemieMainzGermany
  3. 3.National Center for Atmospheric ResearchBoulderUSA
  4. 4.Department für Chemie und Dynamik der GeosphäreForschungszentrum JülichJülichGermany
  5. 5.Astrophysical, Planetary and Atmospheric SciencesUniversity of ColoradoBoulderUSA
  6. 6.Department of Geophysical SciencesUniversity of ChicagoChicagoUSA

Personalised recommendations