Skip to main content

Predesigning a Multiproduct Batch Plant by Mathematical Programming

  • Conference paper
Batch Processing Systems Engineering

Part of the book series: NATO ASI Series ((NATO ASI F,volume 143))

  • 527 Accesses

Abstract

This paper contains a number of MINLP formulations for the preliminary design of a multiproduct batch plant. The inherent flexibility of a batch plant leads to different formulations depending on which aspects we take into account. The formulations include parallel equipment in different configurations, intermediate storage, variable production requirements, multiplant production, discrete equipment sizes and allowing the processing time to be a function of batch size. A task structure synthesis formulation is also presented. The examples are solved with DICOPT++ and the different formulations are coded in GAMS. The resulting solutions (plants) have different objective functions (Costs) and structure depending on the formulation used. Solution times vary significantly in the different formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.B. Birewar and I.E. Grossmann. Efficient optimization Algorithms for Zero-Wait Scheduling of Multiproduct Batch Plants. Ind. Eng. Chem. Res., 28: 1333–1345, 1989.

    Article  Google Scholar 

  2. D.B. Birewar and I.E. Grossmann. Simultaneous Production Planning and Scheduling in Multiproduct Batch Plants. Ind. Eng. Chem. Res., 29: 570–580, 1990.

    Article  Google Scholar 

  3. D.B. Birewar and I.E. Grossmann, Simultaneous Synthesis, Sizing and Scheduling of Multiproduct Batch Plants. Ind. Eng. Chem. Res., 29: 2242–2251, 1990.

    Article  Google Scholar 

  4. D.B. Birewar and I.E. Grossmann. Incorporating Scheduling in the Optimal Design of Multiproduct Batch Plants. Computers and Chem. Eng., 13(1/2): 141–161, 1989.

    Article  Google Scholar 

  5. G.A. Coulman, Algorithm for Optimal Scheduling and Revised Formulation of Batch Plant Design. Ind. Eng. Chem. Res., 28: 553, 1989.

    Article  Google Scholar 

  6. M.A. Duran and I.E. Grossmann. A Mixed-Integer Nonlinear Programming Algorithm for Process System Synthesis. AIChE J., 32(4): 592–606, 1986.

    Article  Google Scholar 

  7. A. Espana, M. Lazard, J.M. Martinez, and L. Puigjaner. Efficient and Simplified Solution to the Predesign Problem of Multiproduct Plants. Computers and Chem. Eng., 13: 163–174, 1989.

    Google Scholar 

  8. R.S. Garfinkel and G.L. Nemhauser. Integer Programming. Wiley: New York, 1972.

    MATH  Google Scholar 

  9. I.E. Grossmann and R.W.H. Sargent. Optimal Design of Multipurpose Chemical Plants. Ind. Eng. Chem. Process. Des. Dev.,18(2), 1979.

    Google Scholar 

  10. I.A. Karimi and G.V. Reklaitis. Intermediate Storage in Noncontinuous Processes Involving Stages of Parallel Units. AJChE J., 31: 44, 1985.

    MathSciNet  Google Scholar 

  11. J. Klossner and D.W.T. Rippin. Combinatorial Problems in the Design of Multiproduct Batch Plant - Extension to Multiplant and Partly Parallel Operation. Presented at the AIChE Annual Meeting, San Francisco, Nov. 1984.

    Google Scholar 

  12. F.C. Knopf, M.R. Okos, and G.V. Reklaitis. Optimal Design of Batch/Semicontinuous Processes. Ind. Eng. Chem. Process. Des. Dev.,21: 79–86, 1982.

    Article  Google Scholar 

  13. G.R. Kocis and I.E. Grossmann. Global Optimization of Nonconvex Mixed-Integer Nonlinear Programming (MINLP) Problems in Process Synthesis. Ind. Eng. Chem. Res.,27: 1407–1421, 1988.

    Article  Google Scholar 

  14. G.R. Kocis and I.E. Grossmann. Relaxation Strategy for the Structural Optimization of Process Flowsheets. Ind. Eng. Chem. Res., 26: 1869–1880, 1987.

    Article  Google Scholar 

  15. YR. Loonkar and J.D. Robinson. Minimization of Capital Investments for Batch Processes. Ind. Eng. Chem. Process. Des. Dev.,9(4), 1970.

    Google Scholar 

  16. A.K. Modi and I.A. Karimi. Design of Multiproduct Batch Processes with Finite Intermediate Storage. Computers and Chem. Eng., 13(1/2): 127–139, 1989.

    Article  Google Scholar 

  17. G.E. Pales and C.A. Floudas. APROS: Algorithmic Development Methodology for Discrete-Continuous Optimization Problems. Operations Research, 37(6): 902–915, 1989.

    Article  Google Scholar 

  18. A.N. Patel, R.S.H. Mah, and I.A. Karimi. Preliminary Design of Multiproduct Non-Continuous Plants Using Simulated Annealing. Computers and Chem. Eng., 1991.

    Google Scholar 

  19. D.E. Ravemark and D.W. T. Rippin. Structure and Equipment for Multiproduct Batch Production. Presented at AIChE 1991 Annual Meeting,Nov. 1991.

    Google Scholar 

  20. D.W. T. Rippin. Design and Operation of Multiproduct and Multipurpose Batch Chemical Plants - An Analysis of Problem Structure. Computers and Chem. Eng., 7(4): 463–481, 1983.

    Article  Google Scholar 

  21. J.D. Robinson and Y.R. Loonkar. Minimizing Capital Investments for Multiproduct Batchplants. Process Technol. Int., 17(11), 1972.

    Google Scholar 

  22. H.E. Salomone and O.A. Iribarren. Posynomial Modeling of Batch Plants: A Procedure to Include Process Decision Variables. Computers and Chem. Eng., 16(3): 173–184, 1992.

    Article  Google Scholar 

  23. R.E. Sparrow, G.I. Forder, and D.W.T. Rippin. The Choise of Equipment Sizes for Multiproduct Batch Plants. Heuristics vs. Branch and Bound. Ind. Eng. Chem. Process. Des. Dev.,14(3), 1975.

    Google Scholar 

  24. I. Suhami and R.S.H. Mah. Optimal Design of Multipurpose Batch Plants. Ind. Eng. Chem. Process. Des. Dev., 21:94–100, 1982.

    Article  Google Scholar 

  25. T. Takamatsu, I. Hashimoto, and S. Hasebe. Optimal Design and Operation of a Batch Process with Intermediate Storage Tanks. Ind. Eng. Chem. Process. Des. Dev., 21: 431–440, 1982.

    Article  Google Scholar 

  26. J. Vaselenak, I.E. Grossmann, and A.W. Westerberg. Optimal Retrofit Design of Multiproduct Batch Plants. Ind. Eng. Chem. Res., 26: 718–726, 1987.

    Article  Google Scholar 

  27. J. Wiswanathan and I.E. Grossmann. A Combined Penalty Function and Outer-Approximation Method for MAINLY Optimization. Computers and Chem. Eng., 14(7): 769–782, 1990.

    Article  Google Scholar 

  28. N.C. Yeh and G.V. Reklaitis. Synthesis and Sizing of Batch/Semicontinuous Processes: Single Product Plants. Computers and Chem. Eng., 11(6): 639–654, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ravemark, D.E., Rippin, D.W.T. (1996). Predesigning a Multiproduct Batch Plant by Mathematical Programming. In: Reklaitis, G.V., Sunol, A.K., Rippin, D.W.T., Hortaçsu, Ö. (eds) Batch Processing Systems Engineering. NATO ASI Series, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60972-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60972-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64635-5

  • Online ISBN: 978-3-642-60972-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics