Abstract

Eukaryotic algae and terrestrial cyanobacteria compose, together with bacteria and fungi, the main part of the plant mass in the soil. According to Shtina (1974), the algal biomass in soils of temperate regions varies from 150 to 500 kg · ha-1. As phototrophic organisms, algae accumulate organic matter, they stabilize soil aggregates, have inducing effects on the development of soil-fungi and bacteria, and serve as sources of energy for the soil-microfauna.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald PA (1990) Soil algae. In: Dindal DL (ed) Soil biology guide. John Wiley & Sons, New York, pp 69–96 (taxonomic literature)Google Scholar
  2. Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species. Univ Texas Publ 6318: 1 – 95Google Scholar
  3. Broady PA (1979) The terrestrial algae of Signy Island, South Orkney Islands. British Antarctic Survey, Sci Rep 98: 1 – 117Google Scholar
  4. Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae. I. Methods and cultural media. J Ecol 30: 284 – 325CrossRefGoogle Scholar
  5. Dunger W, Fiedler HJ (1989) Methoden der Bodenbiologie. Fischer Verlag, Stuttgart, p 432Google Scholar
  6. Göke G (1988) Moderne Methoden der Lichtmikroskopie. Franckh Verlag, Stuttgart, p 336Google Scholar
  7. Gollerbach MM, Shtina EA (1969) Pocvennie Vodorosli. Nauka, Leningrad, p 228 (in Russian)Google Scholar
  8. Lund JWG (1945) Observations on soil algae. I. The ecology, size and taxonomy of British soil diatoms. New Phytol 44: 196 – 219CrossRefGoogle Scholar
  9. Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47: 195 – 312CrossRefGoogle Scholar
  10. Oesterreicher W (1988) Quantitative Erfassung der Bodenalgenflora mit dem Fluoreszenzmikroskop. Leitz Mitt Techn 9: 112 – 116Google Scholar
  11. Ploem JS (1977) Quantitative fluorescence microscopy. In: Meer GA, Elder HY (eds) Analytical and quantitative methods in microscopy. Univ Press, Cambridge, pp 55 – 89Google Scholar
  12. Pringsheim EG (1954) Algenreinkulturen, ihre Herstellung und Erhaltung. Fischer Verlag, Jena, p 109Google Scholar
  13. Shtina EA (1960) Methods of assessing soil algae as a component of the microflora of soil. Soviet Soil Sci 5: 106 – 111Google Scholar
  14. Shtina EA (1974) The principal directions of experimental investigations in soil algology with emphasis on the U.S.S.R. Geoderma 12: 151 – 156CrossRefGoogle Scholar
  15. Shtina EA, Nekrasova KA (1971) The direct and indirect contribution of soil algae to the primary production of biocenoses. IV. Coll Pedobiologiae, Dijon 1970: 37 – 45Google Scholar
  16. Stein JR (ed) (1973) Handbook of phycological methods. Culture methods and growth measurements. Univ Press, Cambridge, p 448Google Scholar
  17. Sugawara H, Ma J, Miyazaki S, Shimura J, Takishima Y (1993) World directory of collections of cultures of microorganisms. WFCC, Riken, p 1148Google Scholar
  18. Tchan, YT (1952) Study of soil algae. I. Fluorescence microscopy for the study of soil algae. Proc Linn Soc 77: 265 – 269Google Scholar
  19. Venkataraman GS (1969) The cultivation of algae. ICAR, New Dehli, p 319Google Scholar
  20. Wiedeman VE, Walne PL, Trainor FR (1964) A new technique for obtaining axenic cultures of algae. Can J Bot 42: 958 – 959CrossRefGoogle Scholar
  21. Ettl H, Gärtner G (1988) Chlorophyta; II - Tetrasporales, Chlorococcales, Taxonomic Gloeodendrales. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 10. Fischer Verlag, Stuttgart, p 436Google Scholar
  22. Komarek J, Fott B (1983) Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Süßwassers 7. Schweizerbart, Stuttgart, p 1043Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • G. Gärtner

There are no affiliations available

Personalised recommendations