Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 118))

Abstract

Ethanol is molecule of simple chemical structure and complex metabolic, pharmacologic and pathologic actions. The two-carbon backbone of ethanol is efficiently converted by most animals, including human beings, to carbon dioxide and water, and a concomitant of this metabolism is the generation of calories. The calories derived from the metabolism of one gram of ethanol exceed the calories that can be derived from the metabolism of one gram of protein. The 1990 per capita annual consumption of ethanol in the USA by individuals age 14 and older (SEVENTH SPECIAL REPORT TO CONGRESS 1990) can be calculated to account for 12% of the caloric intake of these individuals. This figure is similar to the calories derived by the US population from protein and, thus, ethanol can be considered to be a major foodstuff in both the USA and many other countries in which beverage ethanol is legally consumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acquas E, Meloni M, Di Chiara G (1993) Blockade of σ-opioid receptors in the nucleus accumbens prevents ethanol-induced stimulation of dopamine release. Eur J Pharmacol 230:239–241

    PubMed  CAS  Google Scholar 

  • Agarwal DP, Goedde HW (eds) (1990) Alcohol metabolism, alcohol intolerance, and alcoholism — biochemical and pharmacogenetic approaches. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Aguayo LG (1990) Ethanol potentiates the GABAA-activated Cl¯ current in mouse hippocampal and cortical neurons. Eur J Pharmacol 187:127–130

    PubMed  CAS  Google Scholar 

  • Aguirre JC, Del Arbol JL, Raya J, Ruiz-Requena ME, Rico Irles J (1990) Plasmaβendorphin levels in chronic alcoholics. Alcohol 7:409–412

    PubMed  CAS  Google Scholar 

  • Allan AM, Harris RA (1986) Gamma-aminobutyric acid and alcohol actions: neurochemical studies of long sleep and short sleep mice. Life Sci 39:2005–2015

    PubMed  CAS  Google Scholar 

  • Allan AM, Harris RA (1987) Acute and chronic ethanol treatments alter GABA receptor-operated chloride channels. Pharmacol Biochem Behav 27:665–670

    PubMed  CAS  Google Scholar 

  • Allan AM, Mayes GG, Draski LJ (1991) Gamma-aminobutyric acid-activated chloride channels in rats selectively bred for differential acute sensitivity to alcohol. Alcohol Clin Exp Res 15:212–218

    PubMed  CAS  Google Scholar 

  • Alling C, Liljequist S, Engel J (1982) The effect of chronic ethanol administration on lipids and fatty acids in subcellular fractions of rat brain. Med Biol 60:145–154

    Google Scholar 

  • Alling C, Gustavsson L, Anggard E (1983) An abnormal phospholipid in rat organs after ethanol treatment. FEBS Lett 152:24–28

    PubMed  CAS  Google Scholar 

  • Aloia RC, Paxton J, Daviau JS, Van Gelb O, Mlekusch W, Truppe W, Meyer JA, Brauer FS (1985) Effect of chronic alcohol consumption on rat brain microsome lipid composition membrane fluidity and Na+ K+-ATPase activity. Life Sci 36:1003–1017

    PubMed  CAS  Google Scholar 

  • Amit A, Smith BR, Brown ZW, Williams RL (1982) An examination of the role of TIQ alkaloids in alcohol intake: reinforcers, satiety agents or artifacts. In: Bloom F, Barchas J, Sandler M, Usdin E (eds) Progress in clinical and biological research, vol 90. Liss, New York, pp 345–364

    Google Scholar 

  • Angelogianni P, Gianoulakis C (1993) Chronic ethanol increases proopiomelanocortin gene expression in the rat hypothalamus. Neuroendocrinology 57:106–114

    PubMed  CAS  Google Scholar 

  • Arcava Y, Fróes-Ferrão MM, Pereira EFR, Albuquerque EX (1991) Sensitivity of N-methyl-D-aspartate (NMDA) and nicotinic acetylcholine receptors to ethanol and pyrazole. Ann NY Acad Sci 625:451–472

    Google Scholar 

  • Arky RA (1971) The effects of alcohol on carbohydrate metabolism. In: Kissin B, Begleiter H (eds) The biology of alcoholism. Plenum, New York, pp 197–227

    Google Scholar 

  • Asaoka Y, Kikkawa U, Sekiguchi K, Shearman MS, Kosaka Y, Nakano Y, Satoh T, Nishizuka Y (1988) Activation of a brain-specific protein kinase C subspecies in the presence of phosphatidylethanol. FEBS Lett 231:221–224

    PubMed  CAS  Google Scholar 

  • Bacopoulos NG, Bhatanger RK, van Orden LS III (1978) The effects of subhypnotic doses of ethanol on regional catecholamine turnover. J Pharmacol Exp Ther 204:1–10

    PubMed  CAS  Google Scholar 

  • Balduini W, Candura SM, Manzo L, Cattabeni F, Costa LG (1991) Time-, concentration-, and age-dependent inhibition of muscarinic receptor-stimulated phosphoinositide metabolism by ethanol in the developing rat brain. Neurochem Res 16:1235–1240

    PubMed  CAS  Google Scholar 

  • Ballenger JC, Goodwin FK, Major LF, Brown GL (1979) Alcohol and central serotonin metabolism in man. Arch Gen Psychiatry 36:224–227

    PubMed  CAS  Google Scholar 

  • Banerjee SP, Sharma VK, Khanna JM (1978) Alterations inβ-adrenergic receptor binding during ethanol withdrawal. Nature 276:407–409

    PubMed  CAS  Google Scholar 

  • Baraona E, Lieber CS (1979) Effects of ethanol on lipid metabolism. J Lipid Res 20:289–315

    PubMed  CAS  Google Scholar 

  • Barnhill JG, Ciraulo DA, Greenblatt DK, Faggart MA, Harmatz JS (1991) Benzodiazepine response and receptor binding after chronic ethanol ingestion in a mouse model. J Pharmacol Exp Ther 258:812–819

    PubMed  CAS  Google Scholar 

  • Bauché F, Bourdeaux-Jaubert AM, Giudicelli Y, Nordmann R (1987) Ethanol alters the adenosine receptor Ni-mediated adenylate cyclase inhibitory response in rat brain cortex in vitro. FEBS Lett 219:296–300

    PubMed  Google Scholar 

  • Beard JD, Sargent WQ (1979) Water and electrolyte metabolism following ethanol intake and during acute withdrawal form ethanol. In: Majchrowicz E, Noble EP (eds) Biochemistry and pharmacology of ethanol, vol 2. Plenum, New York, pp 3 – 16

    Google Scholar 

  • Becker HC (1988) Effects of the imidazobenzodiazepine Ro 15-4513 on the stimulant and depressant actions of ethanol on spontaneous locomotor activity. Life Sci 43:643–650

    PubMed  CAS  Google Scholar 

  • Becker HC, Hale RL (1993) Repeated episodes of ethanol withdrawal potentiate the severity of subsequent withdrawal seizures: an animal model of alcohol withdrawal “kindling”. Alcohol Clin Exp Res 17:94–98

    PubMed  CAS  Google Scholar 

  • Behrens UJ, Hoerner M, Lasker JM, Lieber CS (1988) Formation of acetaldehyde adducts with ethanol-inducible P450IIE1 in vivo. Biochem Biophys Res Commun 154:584–590

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Aniksztejn L, Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci 15:333–339

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361:315–325

    PubMed  CAS  Google Scholar 

  • Bertolino M, Llinás RR (1992) The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32:399–421

    PubMed  CAS  Google Scholar 

  • Birnbaumer L (1990) G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30:675–705

    PubMed  CAS  Google Scholar 

  • Blandina P, Goldfarb J, Craddock-Royal B, Green JP (1989) Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. J Pharmacol Exp Ther 251:803–809

    PubMed  CAS  Google Scholar 

  • Blitzer RD, Gil O, Landau EM (1990) Long-term potentiation in rat hippocampus is inhibited by low concentrations of ethanol. Brain Res 537:203–208

    PubMed  CAS  Google Scholar 

  • Bloom F, Barchas J, Sandler M, Usdin E (eds) (1982) Beta-carbolines and tetrahydroisoquinolines. Liss, New York (Progress in clinical and biological research, vol 90 )

    Google Scholar 

  • Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Jagadeeswaran P, Nogami H, Briggs AH, Cohn JB (1990) Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 263:2055–2060

    PubMed  CAS  Google Scholar 

  • Blum K, Briggs AH, Elston SFA, Hirst M, Hamilton MG, Verebey K (1980) A common denominator theory of alcohol and opiate dependence: review of similarities and differences. In: Rigter H, Crabbe JC (eds) Alcohol tolerance and dependence. Elsevier Biomedical, New York, pp 371–391

    Google Scholar 

  • Blumenthal RS, Flinn IW, Proske O, Jackson DG, Tena RG, Mitchell MC, Feldman AM (1991) Effects of chronic ethanol exposure on cardiac receptor-adenylate cyclase coupling: studies in cultured embryonic chick myocytes and ethanol fed rats. Alcohol Clin Exp Res 15:1077–1083

    PubMed  CAS  Google Scholar 

  • Blundell JE (1984) Serotonin and appetite. Neuropharmacology 23:1537–1551

    PubMed  CAS  Google Scholar 

  • Bode DC, Molinoff PB (1988a) Effects of ethanol in vitro on the beta adrenergic receptor-coupled adenylate cyclase system. J Pharmacol Exp Ther 246:1040–1047

    CAS  Google Scholar 

  • Bode DC, Molinoff PB (1988b) Effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane of S49 lymphoma cells. Biochemistry 27:5700–5705

    CAS  Google Scholar 

  • Bolos AM, Dean M, Lucas-Derse S, Ramsburg M, Brown GL, Goldman D (1990) Population and pedigree studies reveal a lack of association between dopamine D2 receptor gene and alcoholism. JAMA 264:3156–3160

    PubMed  CAS  Google Scholar 

  • Borg S, Weinholdt T (1982) Bromocriptine in the treatment of the alcohol withdrawal syndrome. Acta Psych Scand 65:101–111

    CAS  Google Scholar 

  • Borg S, Kvande H, Rydberg U, Terenius L, Wahlstrom A (1982) Endorphin levels in human cerebrospinal fluid during alcohol intoxication and withdrawal. Psychopharmacology 78:101–103

    PubMed  CAS  Google Scholar 

  • Borg S, Kvande H, Mossberg D, Valverius P, Sedvall G (1983) Central nervous system noradrenaline metabolism and alcohol consumption in man. Pharmacol Biochem Behav 18 [Suppl 1]:375–378

    PubMed  Google Scholar 

  • Bosron WF, Magnes LJ, Li T-K (1983a) Kinetic and electrophoretic properties of native and recombined isoenzymes of human liver alcohol dehydrogenase. Biochemistry 22:1852–1857

    CAS  Google Scholar 

  • Bosron WF, Magnes LJ, Li T-K (1983b) Human liver alcohol dehydrogenase: ADHIndianapolis results from genetic polymorphism at the ADH2 gene locus. Biochem Genet 21:735–744

    CAS  Google Scholar 

  • Brambilla F, Sarattini F, Gianelli A, Bianchi M, Panerai A (1988) Plasma opioids in alcoholics after acute alcohol consumption and withdrawal. Acta Psychiatr Scand 77:63–66

    PubMed  CAS  Google Scholar 

  • Braun T, Bober E, Schaper J, Agarwal DP, Singh S, Goedde HW (1987) Human mitochondrial aldehyde dehydrogenase: mRNA expression in different tissues using a specific probe isolated from a cDNA expression library. Alcohol [Suppl 1]:161–165

    CAS  Google Scholar 

  • Brennan CH, Crabbe J, Littleton JM (1990) Genetic regulation of dihydropyridine- sensitive calcium channels in brain may determine susceptibility to physical dependence on alcohol. Neuropharmacology 29:429–432

    PubMed  CAS  Google Scholar 

  • Brown LM, Leslie SW, Gonzales RA (1991) The effects of chronic ethanol exposure onN-methyl-D-aspartate-stimulated overflow of [3H]catecholamines from rat brain. Brain Res 547:289–294

    PubMed  CAS  Google Scholar 

  • Browning MD, Endo S, Smith GB, Dudek EM, Olsen RW (1993) Phosphorylation of the GABAA receptor by cAMP-dependent protein kinase and by protein kinase C: analysis of the substrate domain. Neurochem Res 18:95–100

    PubMed  CAS  Google Scholar 

  • Brownstein MJ (1989) Neuropeptides. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry: molecular, cellular and medical aspects, 4th edn. Raven, New York, pp 287–309

    Google Scholar 

  • Buck KJ, Harris RA (1990) Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol. J Pharmacol Exp Ther 253:713–719

    PubMed  CAS  Google Scholar 

  • Buck KJ, Harris RA (1991) Chronic ethanol exposure of Xenopus oocytes expressing mouse brain mRNA reduces GABAA receptor-activated current and benzodiazepine modulation. Mol Neuropharmacol 1:59–64

    Google Scholar 

  • Buck KJ, Hahner L, Sikela J, Harris RA (1991) Chronic ethanol treatment alters brain levels ofy-aminobutyric acidA receptor subunit mRNAs: relationship to genetic differences in ethanol withdrawal seizure severity. J Neurochem 57:1452–1455

    PubMed  CAS  Google Scholar 

  • Bühler R, Pestalozzi D, Hess M, von Wartburg J-P (1983) Immunohistochemical localization of alcohol dehydrogenase in human kidney, endocrine organs and brain. Pharmacol Biochem Behav 18: 55 – 59

    PubMed  Google Scholar 

  • Bujis RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 192:423–435

    Google Scholar 

  • Buller AL, Morrisett RA, Seeburg PH, Monaghan DT (1993) Interaction of ethanol (EtOH) with recombinant heteromeric NMDA receptors expressed in Xenopus oocytes. Alcohol Clin Exp Res 17:475

    Google Scholar 

  • Burbach JPH, DeHoop MJ, Schmale H, Richter D, DeKloet ER, Haaf JAT, DeWied D (1984) Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei. Neuroendocrinology 39:582–584

    PubMed  CAS  Google Scholar 

  • Burchfiel JL, Duchowny MS, Duffy FH (1979) Neuronal supersensitivity to acetylcholine induced by kindling in the rat hippocampus. Science 204:1096–1098

    PubMed  CAS  Google Scholar 

  • Burnell JC, Carr LJ, Dwulet FJ, Edenberg HJ, Li T-K, Bosron WF (1987) The human beta 3 alcohol dehydrogenase subunit differs fromβ1 by a Cys for Arg-369 substitution which decreases NAD(H) binding. Biochem Biophys Res Commun 146:1127–1133

    PubMed  CAS  Google Scholar 

  • Bustos G, Liberona JL, Gysling K (1981) Regulation of transmitter synthesis and release in mesolimbic dopaminergic nerve terminals. Effect of ethanol. Biochem Pharmacol 30:2157–2164

    PubMed  CAS  Google Scholar 

  • Caffé AR, Van Leeuwen FW, Luiten PGM (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 261:237–252

    PubMed  Google Scholar 

  • Campbell AD, Erwin VG (1993) Chronic ethanol administration downregulates neurotensin receptors in long- and short-sleep mice. Pharmacol Biochem Behav 45:95–106

    PubMed  CAS  Google Scholar 

  • Candura SM, Balduini W, Costa LG (1991) Interaction of short chain aliphatic alcohols with muscarinic receptor-stimulated phosphoinositide metabolism in cerebral cortex from neonatal and adult rats. Neurotoxicology 12:23–32

    PubMed  CAS  Google Scholar 

  • Carboni E, Acquas E, Frau R, Di Chiara G (1989) Differential inhibitory effects of a 5-HT3 antagonist on drug-induced stimulation of dopamine release. Eur J Pharmacol 164:515–519

    PubMed  CAS  Google Scholar 

  • Carlen PL, Wu PH (1988) Calcium and sedative-hypnotic drug actions. Int Rev Neurobiol 29:161–189

    PubMed  CAS  Google Scholar 

  • Carpenter JA (1962) Effects of alcohol on some psychological processes. Q J Stud Alcohol 23:274–314

    PubMed  CAS  Google Scholar 

  • Catterall WA (1991) Perspective: functional subunit structure of voltage-gated calcium channels. Science 253:1499–1500

    PubMed  CAS  Google Scholar 

  • Chandler LJ, Newsom H, Summers C, Crews FT (1993a) Chronic ethanol exposure potentiates NMDA excitotoxicity in cerebral cortical neurons. J Neurochem 60:1578–1581

    CAS  Google Scholar 

  • Chandler LJ, Sumners C, Crews FT (1993b) Ethanol inhibits NMDA receptor-mediated excitotoxicity in rat primary neuronal cultures. Alcohol Clin Exp Res 17:54–60

    CAS  Google Scholar 

  • Charness ME (1989) Ethanol and opioid receptor signalling. Experientia 45:418–427

    PubMed  CAS  Google Scholar 

  • Charness ME (1993) Brain lesions in alcoholics. Alcohol Clin Exp Res 17:2–11

    PubMed  CAS  Google Scholar 

  • Charness ME, Gordon AS, Diamond I (1983) Ethanol modulation of opiate receptors in cultured neural cells. Science 222:1426–1428

    Google Scholar 

  • Charness ME, Querimit LA, Diamond I (1986) Ethanol induces the expression of functionalδ-opioid receptors in the neuroblastoma × glioma hybrid NG108–115 cell line. J Biol Chem 261:3164–3169

    PubMed  CAS  Google Scholar 

  • Charness ME, Querimit LA, Henteleff M (1988) Ethanol differentially regulates G proteins in neural cells. Biochem Biophys Res Commun 155:138–143

    PubMed  CAS  Google Scholar 

  • Chen L, Huang L-YM (1991) Sustained potentiation of NMDA receptor-mediated glutamate responses through activation of protein kinase C by a mu opioid. Neuron 7:319–326

    PubMed  Google Scholar 

  • Chik CL, Ho AK (1991) Inhibitory effects of ethanol on the calcium-dependent potentiation of vasoactive intestinal peptide-stimulated cAMP and cGMP accumulation in rat pinealocytes. Biochem Pharmacol 42:1601–1608

    PubMed  CAS  Google Scholar 

  • Chik CL, Ho AK, Klein DC (1987) Ethanol inhibits dual receptor stimulation of pineal cAMP and cGMP by vasoactive intestinal peptide and phenylephrine. Biochem Biophys Res Commun 147:145–151

    PubMed  CAS  Google Scholar 

  • Chik CL, Liu Q-Y, Girard M, Karpinski E, Ho AK (1992) Inhibitory action of ethanol on L-type Ca2+ channels and Ca2+-dependent guanosine 3′,5′- monophosphate accumulation in rat pinealocytes. Endocrinology 131:1895–1902

    PubMed  CAS  Google Scholar 

  • Chin JH, Goldstein DB (1977) Drug tolerance in biomembranes: a spin label study of the effects of ethanol. Science 196:684–685

    PubMed  CAS  Google Scholar 

  • Chin JH, Goldstein DB (1981) Membrane-disordering action of ethanol: variation with membrane cholesterol content and depth of the spin label probe. MoI Pharmacol 19:425–431

    PubMed  CAS  Google Scholar 

  • Chin JH, Parsons LM, Goldstein DB (1978) Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice. Biochim Biophys Acta 513:358–363

    PubMed  CAS  Google Scholar 

  • Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    PubMed  CAS  Google Scholar 

  • Chung CT, Tamarkin L, Hoffman PL, Tabakoff B (1989) Ethanol enhancement of isoproterenol-stimulated melatonin and cyclic AMP release from cultured pineal glands. J Pharmacol Exp Ther 249:16–22

    PubMed  CAS  Google Scholar 

  • Cicero TJ (1981) Neuroendocrinological effects of ethanol. Annu Rev Med 32:123–142

    PubMed  CAS  Google Scholar 

  • Cicero TJ, Bell RD (1980) Effects of ethanol and acetaldehyde on biosynthesis of testosterone in the rodent testes. Biochim Biophys Res Commun 94:814–819

    CAS  Google Scholar 

  • Clark JW, Kalant H, Carmichael FJ (1977) Effect of ethanol tolerance on release of acetylcholine and norepinephrine by rat cerebral cortex slices. Can J Physiol Pharmacol 55:758–768

    PubMed  CAS  Google Scholar 

  • Clark RB, Kunkel MW, Friedman J, Goka TJ, Johnson JA (1988) Activation of cAMP-dependent protein kinase is required for heterologous desensitization of adenylate cyclase in S49 wild-type lymphoma cells. Proc Natl Acad Sci USA 85:1442–1446

    PubMed  CAS  Google Scholar 

  • Clarren SK, Smith DW (1978) The fetal alcohol syndrome. N Engl J Med 298:1063–1067

    PubMed  CAS  Google Scholar 

  • Cloninger CR (1987) Neurogenetic adaptive mechanisms in alcoholism. Science 236:410–416

    PubMed  CAS  Google Scholar 

  • Cloninger CR (1991) D2 dopamine receptor gene is associated but not linked with alcoholism. JAMA 266:1833–1834

    PubMed  CAS  Google Scholar 

  • Cohen G, Collins MA (1970) Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science 167:1749–1751

    PubMed  CAS  Google Scholar 

  • Colbern DL, ten Haaf J, Tabakoff B, van Wimersma Greidanus TB (1985) Ethanol increases plasma vasopressin shortly after intraperitoneal injection in rats. Life Sci 37:1029–1032

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  • Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D, Knell E, Kocsis P, Baumgarten R, Kovacs BW, Levy DL, Smith M, Borison RL, Evans DD, Klein DN, MacMurray J, Tosk JM, Sverd J, Gysin R, Flanagan SD (1991) The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 266:1793–1800

    PubMed  CAS  Google Scholar 

  • Cott JA, Carlson A, Engel J, Lindquist M (1976) Suppression of ethanol-induced locomotor stimulation by GABA-like drugs. Naunyn Schmiedebergs Arch Pharmacol 295:203–209

    PubMed  CAS  Google Scholar 

  • Courtney MJ, Nicholls DG (1992) Interactions between phospholipase C-coupled andN-methyl-D-aspartate receptors in cultured cerebellar granule cells: protein kinase C mediated inhibition ofN-methyl-D-aspartate responses. J Neurochem 59:983–992

    PubMed  CAS  Google Scholar 

  • Crabb DW, Bosron WF, Li T-K (1983) Steady-state kinetic properties of purified rat liver alcohol dehydrogenase: application to predicting alcohol elimination rates in vivo. Arch Biochem Biophys 224:299–309

    PubMed  CAS  Google Scholar 

  • Crabbe JC, Phillips TJ, Kosobud A, Belknap JK (1990) Estimation of genetic correlation: interpretation of experiments using selectively bred and inbred animals. Alcohol Clin Exp Res 14:141–151

    PubMed  CAS  Google Scholar 

  • Crews FT, Majchrowicz E, Meeks R (1983) Changes in cortical synaptosomal plasma membrane fluidity and composition in ethanol-dependent rats. Psychopharmacology 81:208–213

    PubMed  CAS  Google Scholar 

  • Cronholm T, Sjövall J (1970) Effect of ethanol on redox state of steroid sulphates in man. Eur J Biochem 13:124–131

    PubMed  CAS  Google Scholar 

  • Daniell LC, Brass EP, Harris RA (1987) Effect of ethanol on intracellular ionized calcium concentrations in synaptosomes and hepatocytes. Mol Pharmacol 32:831–837

    PubMed  CAS  Google Scholar 

  • Dar MS (1990) Central adenosinergic system involvement in ethanol-induced motor incoordination in mice. J Pharmacol Exp Ther 255 (3): 1202 – 1209

    PubMed  CAS  Google Scholar 

  • Dascal N (1990) Commentary: analysis and functional characteristics of dihydropyridine-sensitive and -insensitive calcium channel proteins. Biochem Pharmacol 40:1171–1178

    PubMed  CAS  Google Scholar 

  • Dave JR, Eiden LE, Karanian JW, Eskay RL (1986) Ethanol exposure decreases pituitary corticotropin-releasing factor binding, adenylate cyclase activity, proopiomelanocortin biosynthesis, and plasmaβ-endorphin levels in the rat. Endocrinology 118:280–286

    PubMed  CAS  Google Scholar 

  • Davidson MD, Wilce P, Shanley BC (1993) Increased sensitivity of the hippocampus in ethanol-dependent rats to toxic effect ofN-methyl-D-aspartic acid in vivo. Brain Res 606:5–9

    PubMed  CAS  Google Scholar 

  • Davis VE, Walsh MJ (1970) Alcohol, amines and alkaloids: a possible biochemical base for alcohol addiction. Science 167:1005–1007

    PubMed  CAS  Google Scholar 

  • Davis VE, Brown H, Huff JA, Cashaw JL (1967a) Ethanol-induced alterations of norepinephrine metabolism in man. J Lab Clin Med 69:787–799

    CAS  Google Scholar 

  • Davis VE, Brown H, Huff JA, Cashaw JL (1967b) The alteration of serotonin metabolism to 5-hydroxytryptophol by ethanol ingestion in man. J Lab Clin Med 69:132–140

    CAS  Google Scholar 

  • De Vries GJ, Buijs RM, Van Leeuwen FW, Caffé AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233:326–254

    Google Scholar 

  • DeLorey TM, Olsen RW (1992) y-Aminobutyric acidA receptor structure and function. J Biol Chem 267:16747–16750

    PubMed  CAS  Google Scholar 

  • DePetrillo PB, Swift RM (1992) Ethanol exposure results in a transient decrease in human platelet cAMP levels: evidence for a protein kinase C mediated process. Alcohol Clin Exp Res 16:290–294

    PubMed  CAS  Google Scholar 

  • Devor EJ, Cloninger CR, Hoffman PL, Tabakoff B (1991) A genetic study of platelet adenylate cyclase activity: evidence for a single major locus effect in fluoride-stimulated activity. Am J Hum Genet 49:372–377

    PubMed  CAS  Google Scholar 

  • Diamond I, Wrubel B, Estrin W, Gordon A (1987) Basal and adenosine receptorstimulated levels of cAMP are reduced in lymphocytes in alcoholic patients. Proc Natl Acad Sci USA 84:1413–1416

    PubMed  CAS  Google Scholar 

  • Diehl AM, Yang SQ, Cote P, Wand GS (1992) Chronic ethanol consumption disturbs G-protein expression and inhibits cyclic AMP-dependent signalling in regenerating rat liver. Hepatology 16:1212–1219

    PubMed  CAS  Google Scholar 

  • Dildy JE, Leslie SW (1989) Ethanol inhibits NMDA-induced increases in free intracellular Ca2+ in dissociated brain cells. Brain Res 499:383–387

    PubMed  CAS  Google Scholar 

  • Dildy-Mayfield JE, Leslie SW (1991) Mechanism of inhibition of N-methyl-Daspartate-stimulated increases in free intracellular Ca2+ concentration by ethanol. J Neurochem 56:1536–1543

    PubMed  CAS  Google Scholar 

  • Dildy-Mayfield JE, Harris RA (1992a) Comparison of ethanol sensitivity of rat brain kainate, DL-α-amino-3-hydroxy-5-methyl-4-isoxalone proprionic acid and N-methyl-D-aspartate receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 262:487–494

    CAS  Google Scholar 

  • Dildy-Mayfield JE, Harris RA (1992b) Acute and chronic ethanol exposure alters the function of hippocampal kainate receptors expressed in Xenopus oocytes. J Neurochem 58:1569–1572

    CAS  Google Scholar 

  • Dolin SJ, Little HJ (1989) Are changes in neuronal calcium channels involved in ethanol tolerance? J Pharmacol Exp Ther 250:985–991

    PubMed  CAS  Google Scholar 

  • Dolin S, Hudspith M, Pagonis C, Little H, Littleton J (1987) Increased dihydropyridine-sensitive Ca2+ channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26:275–279

    PubMed  CAS  Google Scholar 

  • Dolphin AC (1990) G protein modulation of calcium currents in neurons. Annu Rev Physiol 52:243–255

    PubMed  CAS  Google Scholar 

  • Durkin TP, Hashem-Zadeh H, Mandel P, Ebel A (1982) A comparative study of the acute effects of ethanol on the cholinergic system in hippocampus and striatum of inbred mouse strains. J Pharmacol Exp Ther 220:203–208

    PubMed  CAS  Google Scholar 

  • Ehrig T, von Wartburg J-P, Wermuth B (1988) cDNA sequence of theβ2-subunit of human liver alcohol dehydrogenase. FEBS Lett 234:53–55

    PubMed  CAS  Google Scholar 

  • Engberg G, Hajós M (1992) Ethanol attenuates the response of locus coeruleus neurons to excitatory amino acid agonists in vivo. Naunyn Schmiedebergs Arch Pharmacol 345:222–226

    PubMed  CAS  Google Scholar 

  • Engel JA, Fahlke C, Hulthe P, Hard E, Johannessen K, Snape B, Svenson L (1988) Biochemical and behavioral evidence for an interaction between ethanol and calcium channel antagonists. J Neural Transm 74:181–193

    PubMed  CAS  Google Scholar 

  • Erickson CK, Graham DT (1973) Alterations in cortical and reticular acetylcholine release by ethanol in vivo. J Pharmacol Exp Ther 185:583–593

    PubMed  CAS  Google Scholar 

  • Erickson CK, Tyler TD, Beck LK, Duensing KL (1980) Calcium enhancement of alcohol and drug-induced sleeping time in mice and rats. Pharmacol Biochem Behav 12:651–656

    PubMed  CAS  Google Scholar 

  • Eriksson CJ, Marselos M, Koivula T (1975) Role of cytosolic rat liver aldehyde dehydrogenase in the oxidation of acetaldehyde during ethanol metabolism in vivo. Biochem J 152:709–712

    PubMed  CAS  Google Scholar 

  • Eriksson CJP (1983) Human blood acetaldehyde concentration during ethanol oxidation (update 1982). Pharmacol Biochem Behav 18:141–150

    PubMed  CAS  Google Scholar 

  • Erwin VG, Deitrich RA (1966) Brain aldehyde dehydrogenase: localization, purification and properties. J Biol Chem 241:3533–3539

    PubMed  CAS  Google Scholar 

  • Erwin VG, Jones BC (1989) Comparison of neurotensin levels, receptors and actions in LS/Ibg and SS/Ibg mice. Peptides 10:435–440

    PubMed  CAS  Google Scholar 

  • Erwin VG, Korte A (1988) Brain neurotensin receptors in mice bred for differences in sensitivity to ethanol. Alcohol 5:195–201

    PubMed  CAS  Google Scholar 

  • Erwin VG, Jones BC, Radcliffe R (1990) Low doses of ethanol reduce neurotensin levels in discrete brain regions from LS/Ibg and SS/Ibg mice. Alcohol Clin Exp Res 14:42–47

    PubMed  CAS  Google Scholar 

  • Erwin VG, Campbell AD, Radcliffe RA (1992) Effects of chronic ethanol administration on neurotensinergic processes: Correlations with tolerance in LS and SS mice. Ann NY Acad Sci 654:441–443

    PubMed  CAS  Google Scholar 

  • Fadda F, Argiolas A, Melis MR, Serra G, Gessa GL (1980) Differential effect of acute and chronic ethanol on dopamine metabolism in frontal cortex, caudate nucleus and substantia nigra. Life Sci 27:979–986

    PubMed  CAS  Google Scholar 

  • Feiman MD (1979) Biochemical pharmacology of disulfiram. In: Majchrowicz E, Noble EP (eds) Biochemistry and pharmacology of ethanol. Plenum, New York, pp 325–348

    Google Scholar 

  • File SE, Zharkovsky A, Gulati K (1991) Effects of baclofen and nitrendipine on ethanol withdrawal responses in the rat. Neuropharmacology 30:183–190

    PubMed  CAS  Google Scholar 

  • Fink K, Göthert M, Molderings G, Schlicker E (1989)N-methyl-D-aspartate (NMDA) receptor-mediated stimulation of noradrenaline release, but not release of other neurotransmitters, in the rat brain cortex: receptor location, characterization and desensitization. Naunyn Schmiedebergs Arch Pharmacol 339:514–521

    PubMed  CAS  Google Scholar 

  • Forman DT, Bradford BU, Handler JA, Glassman EB, Thurman RG (1988) Involvement of hormones in the swift increase in alcohol metabolism. Ann Clin Lab Sci 18: 318 –325

    PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1984) Do general anesthetics act by competitive binding to specific receptors? Nature 310:599–601

    PubMed  CAS  Google Scholar 

  • Freissmuth M, Casey PJ, Gilman AG (1989) G proteins control diverse pathways of transmembrane signalling. FASEB J 3:2125–2131

    PubMed  CAS  Google Scholar 

  • French SW, Palmer DS, Narod ME, Reid PE, Ramey CW (1975) Noradrenergic sensitivity of the cerebral cortex after chronic ethanol ingestion and withdrawal. J Pharmacol Exp Ther 194:319–326

    PubMed  CAS  Google Scholar 

  • Frezza M, Di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS (1990) High blood alcohol levels in women — the role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med 322:95–99

    PubMed  CAS  Google Scholar 

  • Frye GD, McCown TJ, Breese GR (1983) Characterization of susceptibility to audiogenic seizures in ethanol-dependent rats after microinjection of yaminobutyric acid (GABA) agonists into the inferior colliculus, substantia nigra or medial septum. J Pharmacol Exp Ther 227:663–670

    PubMed  CAS  Google Scholar 

  • Frye GD, Mathew J, Trzeciakowski JP (1991) Effect of ethanol dependence on GABAA antagonist-induced seizures and agonist-stimulated chloride uptake. Alcohol 8:453–459

    PubMed  CAS  Google Scholar 

  • Gelernter J, O’Malley S, Risch N, Kranzler HR, Krystal J, Merikangas K, Kennedy JL, Kidd K (1991) No association between an allele at the D2 dopamine receptor gene (DRD2) and alcoholism. JAMA 266:1801–1807

    PubMed  CAS  Google Scholar 

  • Genazzani AR, Nappi G, Facchinetti F, Mazzella GL, Parrini D, Sinforiani E, Petraglia F, Savoldi F (1982) Central deficiency ofβ-endorphin in alcohol addicts. J Clin Endocrinol Metab 55:583–586

    PubMed  CAS  Google Scholar 

  • Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurones in the ventral tegmental area. Brain Res 348:201–203

    PubMed  CAS  Google Scholar 

  • Gessner PK (1979) Drug therapy of the alcohol withdrawal syndrome. In: Majchrowicz E, Noble EP (eds) Biochemistry and pharmacology of ethanol, vol 2. Plenum, New York, pp 375–435

    Google Scholar 

  • Ghalioungui P (1979) Fermented beverages in antiquity. In: Gastineu CF, Darby WJ, Turner TB (eds) Fermented food beverages in nutrition. Academic, New York, pp 4–18

    Google Scholar 

  • Gianoulakis C (1983) Long-term ethanol alters the binding of 3H-opiates to brain membranes. Life Sci 33:725–733

    PubMed  CAS  Google Scholar 

  • Gianoulakis C (1989) The effect of ethanol on the biosynthesis and regulation of opioid peptides. Experientia 45:428–435

    PubMed  CAS  Google Scholar 

  • Gianoulakis C (1990) Characterization of the effects of acute ethanol administration on the release of theβ-endorphin peptides by the rat hypothalamus. Eur J Pharmacol 180:21–29

    PubMed  CAS  Google Scholar 

  • Gianoulakis C, Barcomb A (1987) Effect of acute ethanol in vivo and in vitro on theβ-endorphin system in the rat. Life Sci 40:19–28

    PubMed  CAS  Google Scholar 

  • Gianoulakis C, Woo N, Drouin JN, Seidah NG, Kalant H, Chrétien M (1981) Biosynthesis ofβ-endorphin by the neurointermediate lobes from rats treated with morphine or alcohol. Life Sci 29:1973–1982

    PubMed  CAS  Google Scholar 

  • Gianoulakis C, Chan JSD, Kalant H, Chrétien M (1983) Chronic ethanol treatment alters the biosynthesis ofβ-endorphin by the rat neurointermediate lobe. Can J Physiol Pharmacol 61:967–976

    PubMed  CAS  Google Scholar 

  • Gianoulakis C, Hutchison WD, Kalant H (1988) Effects of ethanol treatment and withdrawal on biosynthesis and processing of proopiomelanocortin by the rat neurointermediate lobe. Endocrinology 122:817–825

    PubMed  CAS  Google Scholar 

  • Giri PR, Linnoila M, O’Neill JB, Goldman D (1989) Distribution and possible metabolic role of class III alcohol dehydrogenase in the human brain. Brain Res 481:131–141

    PubMed  CAS  Google Scholar 

  • Goldstein DB, Chin JH, Lyon RC (1982) Ethanol disordering of spin-labeled mouse brain membranes-correlation with genetically determined ethanol sensitivity of mice. Proc Natl Acad Sci USA 79:4231–4233

    PubMed  CAS  Google Scholar 

  • Gonzales RA, Woodward JJ (1990) Ethanol inhibitsN-methyl-D-aspartate-stimulated [3H]norepinephrine release from rat cortical slices. J Pharmacol Exp Ther 253:1138–1144

    PubMed  CAS  Google Scholar 

  • Gonzales RA, Theiss C, Crews FT (1986) Effects of ethanol on stimulated inositol phospholipid hydrolysis in rat brain. J Pharmacol Exp Ther 237:92–98

    PubMed  CAS  Google Scholar 

  • Gordon AS, Collier K, Diamond I (1986) Ethanol regulation of adenosine receptorstimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol. Proc Natl Acad Sci USA 83:2105–2108

    PubMed  CAS  Google Scholar 

  • Göthert M, Fink M (1989) Inhibition ofN-methyl-D-aspartate (NMDA)- and L-glutamate-induced noradrenaline and acetylcholine release in the rat brain by ethanol. Naunyn Schmiedebergs Arch Pharmacol 340:516–521

    PubMed  Google Scholar 

  • Grandy DK, Litt M, Allen L, Bunzow Jr, Marchionni M, Makam H, Reed L, Magenis RE, Civelli O (1989) The human dopamine D2 receptor gene is located on chromosome 11 at q22–q23 and identifies aTαqI RFLP. Am J Hum Genet 45:778–785

    PubMed  CAS  Google Scholar 

  • Grant AJ, Koski G, Treistman SN (1993) Effect of chronic ethanol on calcium currents and calcium uptake in undifferentiated PC12 cells. Brain Res 600:280–284

    PubMed  CAS  Google Scholar 

  • Grant KA, Barren JE (1991) Blockade of the discriminative stimulus effect of ethanol with 5-HT3 receptor antagonists. Psychopharmacology 104:451–456

    PubMed  CAS  Google Scholar 

  • Grant KA, Colombo G (1992) Discriminative stimulus effects of ethanol: effect of training dose on the substitution ofN-methyl-D-aspartate antagonists. J Pharmacol Exp Ther 264:1241–1247

    Google Scholar 

  • Grant KA, Valverius P, Hudspith M, Tabakoff B (1990) Ethanol withdrawal seizures and the NMDA receptor complex. Eur J Pharmacol 176:289–296

    PubMed  CAS  Google Scholar 

  • Grant KA, Knisely JS, Tabakoff B, Barren JE, Balster RL (1991) Ethanol-like discriminative stimulus effects of non-competitiveN–methyl-D-aspartate antagonists. Behav Pharmacol 2:87–95

    PubMed  Google Scholar 

  • Grant KA, Snell LD, Rogawski MA, Thurkauf A, Tabakoff B (1992) Comparison of the effects of the uncompetitiveN-methyl-D-aspartate antagonist (±)-5aminocarbonyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (ADCI) with its structural analogs dizocilpine (MK-801) and carbamazepine on ethanol withdrawal seizures. J Pharmacol Exp Ther 260:1017–1022

    PubMed  CAS  Google Scholar 

  • Greenberg DA, Carpenter CL, Messing RO (1987) Ethanol-induced component of45Ca+ uptake in PC12 cells is sensitive to Ca2+ channel modulating drugs. Brain Res 410:143–146

    PubMed  CAS  Google Scholar 

  • Gulya K, Grant KA, Valverius P, Hoffman PL, Tabakoff B (1991) Brain regional specificity and time course of changes in the NMDA receptor-ionophore complex during alcohol withdrawal. Brain Res 547:129–134

    PubMed  CAS  Google Scholar 

  • Gulya K, Orpana AK, Sikela JM, Hoffman PL (1993) Prodynorphin and vasopressin mRNA levels are differentially affected by chronic ethanol ingestion in the mouse. Mol Brain Res 20:1–8

    PubMed  CAS  Google Scholar 

  • Gustavsson L, Alling C (1987) Formation of phosphatidylethanol in rat brain by phospholipase D. Biochem Biophys Res Commun 142:958–963

    PubMed  CAS  Google Scholar 

  • Hannak D, Bartelt U, Katterman R (1985) Acetate formation after short-term ethanol administration in man. Biol Chem Hoppe Seyler 366:749–753

    PubMed  CAS  Google Scholar 

  • Harada S, Misawa S, Agarwal DP, Goedde HW (1980) Liver alcohol and aldehyde dehydrogenase in the Japanese: isozyme variation and its possible role in alcohol intoxication. Am J Hum Genet 32:8–15

    PubMed  CAS  Google Scholar 

  • Harada S, Agarwal DP, Goedde HW (1981) Aldehyde dehydrogenase deficiency as cause of facial flushing reaction to alcohol in Japanese. Lancet ii:982

    Google Scholar 

  • Harada S, Agarwal DP, Goedde HW, Tagaki S, Ishikawa B (1982) Possible protective role against alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan. Lancet ii:827

    Google Scholar 

  • Harden TK (1983) Agonist-induced desensitization of theβ-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 35:5–32

    PubMed  CAS  Google Scholar 

  • Harper JC, Brennan CH, Littleton JM (1989) Genetic up regulation of calcium channels in a cellular model of ethanol dependence. Neuropharmacology 28:1299–1302

    PubMed  CAS  Google Scholar 

  • Harper RF (1904) The Code of Hammurabi, King of Babylon. University of Chicago Press, Chicago

    Google Scholar 

  • Harris RA (1979) Alteration of alcohol effects by calcium and other inorganic cations. Pharmacol Biochem Behav 10:527–534

    PubMed  CAS  Google Scholar 

  • Harris RA, Groh GI, Baxter DM, Hitzemann RJ (1984) Gangliosides enhance the membrane actions of ethanol and pentobarbital. Mot Pharmacol 25:410–417

    CAS  Google Scholar 

  • Harris RA, Zaccaro LM, McQuilkin S, McClard A (1988) Effects of ethanol and calcium on lipid order of membranes from mice selected for genetic differences in ethanol intoxication. Alcohol 5:251–257

    PubMed  CAS  Google Scholar 

  • Helander A (1993) Aldehyde dehydrogenase in blood: distribution, characteristics and possible use as marker of alcohol misuse. Alcohol 28:135–145

    CAS  Google Scholar 

  • Hellevuo K, Hoffman PL, Tabakoff B (1991) Ethanol fails to modify [3H]GR65630 binding to 5-HT3 receptors in NCB-20 cells and in rat cerebral membranes. Alcohol Clin Exp Res 15:775 –778

    PubMed  CAS  Google Scholar 

  • Hiller JM, Angel LM, Simon EJ (1981) Multiple opiate receptors: alcohol selectively inhibits binding to the delta receptor. Science 214:468–469

    PubMed  CAS  Google Scholar 

  • Hiller JM, Angel LM, Simon EJ (1984) Characterization of the selective inhibition of the delta subclass of opioid binding sites by alcohols. Mol Pharmacol 25:249–255

    PubMed  CAS  Google Scholar 

  • Hillmann M, Wilce PA, Pietrzak ER, Ward LC, Shanley BC (1990) Chronic ethanol administration alters binding of [35S]t-butylbicyclophosphorothionate to the GABA-benzodiazepine receptor complex in rat brain. Neurochem Int 16:187–191

    PubMed  CAS  Google Scholar 

  • Hitzemann RJ, Schuéler HE, Graham-Brittain C, Kreishman GP (1986) Ethanol-induced changes in neuronal membrane order. An NMR study. Biochim Biophys Acta 859:189–197

    CAS  Google Scholar 

  • Hoek JB, Thomas AP, Rubin R, Rubin E (1987) Ethanol-induced mobilization of calcium by activation of phosphoinositide-specific phospholipase C in intact hepatocytes. J Biol Chem 262:682–691

    PubMed  CAS  Google Scholar 

  • Hoek JB, Taraschi TF, Rubin E (1988) Functional implications of the interaction of ethanol with biologic membranes: actions of ethanol on hormonal signal transduction systems. Semin Liver Dis 8:36–46

    PubMed  CAS  Google Scholar 

  • Hoffman PL (1987) Central nervous system effects of neurohypophyseal peptides. In: Smith CW (ed) The peptides, vol 8: chemistry, biology and medicine of neurohypophyseal hormones and their analogs. Academic, New York, pp 239–295

    Google Scholar 

  • Hoffman PL, Dave JR (1991) Chronic ethanol exposure uncouples vasopressin synthesis and secretion in rats. Neuropharmacology 30:1245–1249

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Tabakoff B (1985) Ethanol’s action on brain biochemistry. In: Tarter RE, van Thiel DH (eds) Alcohol and the brain: chronic effects. Plenum, New York, pp 19–68

    Google Scholar 

  • Hoffman PL, Tabakoff B (1986) Ethanol does not modify opiate receptor inhibition of striatal adenylate cyclase. J Neurochem 46:812–816

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Tabakoff B (1990) Ethanol and guanine nucleotide binding proteins: a selective interaction. FASEB J 4:2612–2622

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Ritzmann RF, Walter R, Tabakoff B (1987) Arginine vasopressin maintains ethanol tolerance. Nature 276:614–616

    Google Scholar 

  • Hoffman PL, Chung CT, Tabakoff (1984) Effects of ethanol, temperature, and endogenous regulatory factors on the characteristics of striatal opiate receptors. J Neurochem 43:1003–1010

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Moses F, Luthin G, Tabakoff B (1986) Acute and chronic effects of ethanol on receptor-mediated phosphatidylinositol 4,5-bisphosphate breakdown in mouse brain. Mol Pharmacol 30:13–18

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Tabakoff B, Szabó G, Suzdak PD, Paul SM (1987) Effect of an imidazobenzodiazepine, Ro15-4513, on the incoordination and hypothermia produced by ethanol and pentobarbital. Life Sci 41:611–619

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Rabe CS, Moses F, Tabakoff B (1989)N-methyl-D-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production. J Neurochem 52:1937–1940

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Ishizawa H, Girl PR, Dave JR, Grant KA, Liu L-I, Gulya K, Tabakoff B (1990) The role of arginine vasopressin in alcohol tolerance. Ann Med 22:269–274

    PubMed  CAS  Google Scholar 

  • Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10:943–954

    PubMed  CAS  Google Scholar 

  • Howerton TC, Marks MJ, Collins AC (1982) Norepinephrine, gamma-aminobutyric acid and choline reuptake kinetics and the effects of ethanol in long-sleep and short-sleep mice. Subst Alcohol Actions Misuse 3:89–99

    PubMed  CAS  Google Scholar 

  • Howerton TC, O’Connor F, Collins AC (1983) Differential effects of long-chain alcohols in long- and short-sleep mice. Psychopharmacology 79:313–317

    PubMed  CAS  Google Scholar 

  • Hunt WA (1985) Alcohol and biological membranes. Guilford, New York

    Google Scholar 

  • Hunt WA, Majchrowicz E (1974) Alterations in the turnover of brain norepinephrine and dopamine in the alcohol-dependent rat. J Neurochem 23:549–552

    PubMed  CAS  Google Scholar 

  • Hunt WA, Majchrowicz E, Dalton J (1979) Alterations in high-affinity choline uptake in brain after chronic ethanol treatment. J Pharmacol Exp Ther 210:259–263

    PubMed  CAS  Google Scholar 

  • Hynes MD, Lochner MA, Bemis KG, Hymson DL (1983) Chronic ethanol alters the receptor binding characteristics of the δ-opioid receptor ligand D-Ala2-D-Leu5 enkephalin in mouse brain. Life Sci 33:2331–2337

    PubMed  CAS  Google Scholar 

  • Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M (1992) Cloning and expression of theε4 subunit of the NMDA receptor channel. FEBS Lett 313:34–38

    PubMed  CAS  Google Scholar 

  • Ilyin V, Parker I (1992) Effects of alcohols on responses evoked by inositol trisphosphate in Xenopus oocytes. J Physiol (Lond) 448:339–354

    CAS  Google Scholar 

  • Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219–228

    PubMed  CAS  Google Scholar 

  • Imperato A, Scrocco MG, Bacchi S, Angelucci L (1990) NMDA receptors and in vivo dopamine release in the nucleus accumbens and caudatus. Eur J Pharmacol 187:555–556

    PubMed  CAS  Google Scholar 

  • Iorio KR, Reinlib L, Tabokoff B, Hoffman PL (1992) Chronic exposure of cerebellar granule cells to ethanol results in increased NMDA receptor function. Mol Pharmacol 41:1142–1148

    PubMed  CAS  Google Scholar 

  • Iorio KR, Tabakoff B, Hoffman PL (1993) Glutamate-induced neurotoxicity is increased in cerebellar granule cells exposed chronically to ethanol. Eur J Pharmacol 248:209–212

    PubMed  CAS  Google Scholar 

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268:2836–2843

    PubMed  CAS  Google Scholar 

  • Ishizawa H, Dave JR, Liu L, Tabakoff B, Hoffman PL (1990) Hypothalamic vasopressin mRNA levels in mice are decreased after chronic ethanol ingestion. Eur J Pharmacol 189:119–127

    PubMed  CAS  Google Scholar 

  • Jörnvall H, Höög J-O, von Bahr-Lindström H, Vallee BL (1987) Mammalian alcohol dehydrogenase of separate classes: intermediates between different enzymes and intraclass isozymes. Proc Natl Acad Sci USA 84:2580–2584

    PubMed  Google Scholar 

  • Kaiser R, Holmquist B, Hempel J, Vallee BL, Jörnvall H (1988) Class III human liver alcohol dehydrogenase: a novel structure type equidistantly related to the class I and II enzymes. Biochem 27:1132–1140

    CAS  Google Scholar 

  • Kalant H (1971) Absorbtion, diffusion, distribution and elimination of ethanol: effects on biological membranes. In: Kissin B, Begleiter H (eds) The biology of alcoholism, vol I. Plenum, New York, pp 1–62

    Google Scholar 

  • Karobath M, Rogers J, Bloom FE (1980) Benzodiazepine receptors remain unchanged after chronic ethanol administration. Neuropharmacology 19:125–128

    PubMed  CAS  Google Scholar 

  • Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431–437

    PubMed  CAS  Google Scholar 

  • Keir WJ, Al-Ghoul W, Morrow AL (1993) NMDA receptor subunit composition in withdrawal seizure prone and withdrawal seizure resistant mice. Alcohol Clin Exp Ther 17:477

    Google Scholar 

  • Keith LD, Crabbe J, Robertson LM, Kendall JW (1986) Ethanol stimulated endorphin and corticotropin secretion in vitro. Brain Res 367:222–229

    PubMed  CAS  Google Scholar 

  • Kellenberger S, Malherbe P, Sigel E (1992) Function of the α1β2y2s y-aminobutyric acid type A receptor is modulated by protein kinase C via multiple phosphorylation sites. J Biol Chem 267:25660–25663

    PubMed  CAS  Google Scholar 

  • Kemp JA, Leeson PD (1993) The glycine site of the NMDA receptor — five years on. Trends Pharmacol Sci 14:20–25

    PubMed  CAS  Google Scholar 

  • Khanna JM, Kalant H, Shah G, Chau A (1992a) Effect of (+)MK-801 and ketamine on rapid tolerance to ethanol. Brain Res Bull 28:311–314

    CAS  Google Scholar 

  • Khanna JM, Kalant H, Weiner J, Chau A, Shah G (1992b) Ketamine retards chronic but not acute tolerance to ethanol. Pharmacol Biochem Behav 42:347–350

    CAS  Google Scholar 

  • Kharbanda S, Nakamura T, Kufe D (1993) Induction of the c-jun proto-oncongene by a protein kinase C-dependent mechanism during exposure of human epidermal keratinocytes to ethanol. Biochem Pharmacol 45:675–681

    PubMed  CAS  Google Scholar 

  • Khatami S, Hoffman PL, Shibuya T, Salafsky B (1987) Selective effects of ethanol on opiate receptor subtypes in brain. Neuropharmacology 26:1503–1507

    PubMed  CAS  Google Scholar 

  • Kiianmaa K, Tabakoff B (1983) Neurochemical correlates of tolerance and strain differences in the neurochemical effects of ethanol. Pharmacol Biochem Behav 18 [Suppl 1]:383–388

    PubMed  CAS  Google Scholar 

  • Kiss Z (1991) Cooperative effects of ethanol and protein kinase C activators on phospholipase-D-mediated hydrolysis of phosphatidylethanolamine in NIH 3T3 fibroblasts. J Biol Chem 266:10344–10350

    Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes. Science 241:835–837

    PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Bear MF, Singer W (1987) Blockade of NMDA receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238:355–358

    PubMed  CAS  Google Scholar 

  • Kleuss C, Scherübl H, Hescheler J, Schultz G, Wittig B (1993) Selectivity in signal transduction determined by y subunits of heterotrimeric G proteins. Science 259:832–834

    PubMed  CAS  Google Scholar 

  • Koltchine V, Anantharam V, Wilson A, Bayley H, Treistman SN (1993) Homomeric assemblies of NMDARl splice variants are sensitive to ethanol. Neurosci Lett 152:13–16

    PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    PubMed  CAS  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and the function of reward pathways. Trends Pharmacol Sci 13:177–184

    PubMed  CAS  Google Scholar 

  • Koppi S, Eberhardt G, Haller R, Konig P (1987) Calcium channel blocking agent in the treatment of acute alcohol withdrawal. Caroverine versus meprobamate in a randomized double-blind study. Neuropsychobiology 17:49–52

    PubMed  CAS  Google Scholar 

  • Korpi ER, Kleingoor C, Kettenmann H, Seeburg PH (1993) Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABAA receptor. Nature 361:356–359

    PubMed  CAS  Google Scholar 

  • Kozlowski GP, Long S, deSchweinitz JH (1989) Opposite effects of alcohol on numbers of immunoreactive vasopressin (VP) and oxytocin (OT) neurons in the paraventricular nucleus (PVN). Alcohol Clin Exp Res 13:317

    Google Scholar 

  • Krupinski J, Lehman TC, Frankenfield CD, Zwaagstra JC, Watson PA (1992) Molecular diversity in the adenylylcyclase family: evidence for eight forms of the enzyme and cloning of type VI. J Biol Chem 267:24858–24862

    PubMed  CAS  Google Scholar 

  • Kumar KN, Tilakaratne N, Johnson PS, Allen AE, Michaelis EK (1991) Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 354:70–73

    PubMed  CAS  Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41

    PubMed  CAS  Google Scholar 

  • Lê AD, Kalant H, Khanna JM (1982) Interaction between des-9-glycinamide[8Arg]vasopressin and serotonin on ethanol tolerance. Eur J Pharmacol 80:337–345

    PubMed  Google Scholar 

  • Lee RW, Lieberman BS, Yamane HK, Bok D, Fung BK-K (1992) A third form of the G proteinβsubunit. J Biol Chem 267:24776–24781

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Hausdorff WP, Caron MG (1990) Role of phosphorylation in desensitization of theβ-adrenoceptor. Trends Pharmacol Sci 11:190–194

    PubMed  CAS  Google Scholar 

  • Leidenheimer NJ, Whiting PJ, Harris RA (1993) Activation of calcium-phospholipid-dependent protein kinase enhances benzodiazepine and barbiturate potentiation of the GABAA receptor. J Neurochem 60:1972–1975

    PubMed  CAS  Google Scholar 

  • Leslie SW (1986) Sedative-hypnotic drugs: interaction with calcium channels. Alcohol Drug Res 6:371–377

    CAS  Google Scholar 

  • Lex BW, Ellingboe J, LaRosa K, Teoh SK, Mendelson JH (1993) Comparison of platelet monamine oxidase and adenylate cyclase activities in female alcoholics and in non-alcoholic control women with and without a family history of alcoholism. Harvard Rev Psych 1:229–237

    CAS  Google Scholar 

  • Lieber CS (1985) Alcohol and liver: metabolism of ethanol, metabolic effects and pathogenesis of injury. Acta Med Scand [Suppl] 703:11–55

    CAS  Google Scholar 

  • Lieber CS (1988) Biochemical and molecular basis of alcohol-induced injury to liver and other tissues. N Engl J Med 319:1639–1650

    PubMed  CAS  Google Scholar 

  • Lieber CS (1991a) Pathways of ethanol metabolism and related pathology. In: Palmer TN (ed) Alcoholism: a molecular perspective. Plenum, New York, pp 1–25

    Google Scholar 

  • Lieber CS (1991b) Alcohol, liver and nutrition. J Am Coll Nutr 10:602–632

    CAS  Google Scholar 

  • Lieber CS, DeCarli LM (1972) The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J Pharmacol Exp Ther 181:279–287

    PubMed  CAS  Google Scholar 

  • Liljequist S (1991) The competitive NMDA receptor antagonist, CGP 39551, inhibits ethanol withdrawal seizures. Eur J Pharmacol 192:197–198

    PubMed  CAS  Google Scholar 

  • Liljequist S, Engel J (1982) Effects of GABAergic agonists and antagonists on various ethanol-induced behavioral changes. Psychopharmacology 78:71–75

    PubMed  CAS  Google Scholar 

  • Liljequist S, Tabakoff B (1985) Binding characteristics of [3H]flunitrazepam and CL 218,872 in cerebellum and cortex of C57BL mice made tolerant to and dependent on phenobarbital or ethanol. Alcohol 2:215–220

    PubMed  CAS  Google Scholar 

  • Liljequist S, Culp S, Tabakoff B (1986) Effect of ethanol on the binding of35S-t-butylbicyclophosphorothionate to mouse brain membranes. Life Sci 38:1931–1939

    PubMed  CAS  Google Scholar 

  • Lima-Landman MT, Albuquerque EX (1989) Ethanol potentiates and blocks NMDA-activated single-channel currents in rat hippocampal pyramidal cells. FEBS Lett 247:61–67

    PubMed  CAS  Google Scholar 

  • Lin AM-Y, Freund RK, Palmer MR (1991) Ethanol potentiation of GABA-induced electrophysiological responses in cerebellum: requirement for catecholamine modulation. Neurosci Lett 122:154–158

    PubMed  CAS  Google Scholar 

  • Lin AM-Y, Bickford PC, Palmer MR (1993a) The effects of ethanol on y-aminobutyric acid-induced depressions of cerebellar Purkinje neurons: influence of beta adrenergic receptor action in young and aged Fischer 344 rats. J Pharmacol Exp Ther 264:951–957

    CAS  Google Scholar 

  • Lin AM-Y, Freund RK, Palmer MR (1993b) Sensitization of y-aminobutyric acid-induced depressions of cerebellar Purkinje neurons to the potentiative effects of ethanol by beta adrenergic mechanisms in rat brain. J Pharmacol Exp Ther 265:426–432

    CAS  Google Scholar 

  • Lin RC, Smith RS, Lumeng L (1988) Detection of a protein-acetaldehyde adduct in the liver of rats fed alcohol chronically. J Clin Invest 81:615–619

    PubMed  CAS  Google Scholar 

  • Lin T-A, Navidi M, James W, Lin T-N, Sun GY (1993c) Effects of acute ethanol administrtion on polyphosphoinositide turnover and levels of inositol 1,4,5-trisphosphate in mouse cerebrum and cerebellum. Alcohol Clin Exp Res 17:401–405

    CAS  Google Scholar 

  • Lindros KO, Stowell A, Pikkarainen P, Salaspuro M (1980) Elevated blood acetaldehyde in alcoholics with accelerated ethanol elimination. Pharmacol biochem Behav 13 [Suppl 1]:119–124

    PubMed  Google Scholar 

  • Lister RG, Durcan MJ (1989) Antagonism of the intoxicating effects of ethanol by the potent benzodiazpine receptor ligand Ro 19-4603. Brain Res 482:141–144

    PubMed  CAS  Google Scholar 

  • Little HJ, Dolin SJ, Halsey MJ (1988a) Calcium channel antagonists decrease the ethanol withdrawal syndrome. Life Sci 39:2059–2065

    Google Scholar 

  • Little HJ, Dolin SJ, Whittingto MA (1988b) Possible role of calcium channels in ethanol tolerance and dependence. Ann NY Acad Sci 560:465–466

    Google Scholar 

  • Littleton JM, John GR, Grieve SJ (1979) Alterations in phospholipid composition in ethanol tolerance and dependence. Alcohol Clin Exp Res 3:50–56

    PubMed  CAS  Google Scholar 

  • Lovinger DM, Zhou Q (1993) Trichloroethanol potentiation of 5-hydroxytryptamine3 receptor-mediated ion current in nodose ganglion neurons from the adult rat. J Pharmacol Exp Ther 265:771–776

    PubMed  CAS  Google Scholar 

  • Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724

    PubMed  CAS  Google Scholar 

  • Lovinger DM, White G, Weight FF (1990) NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat. J Neurosci 10:1372–1379

    PubMed  CAS  Google Scholar 

  • Lovinger DM, White G (1991) Ethanol potentiation of 5-hydroxytryptamine3 receptor-mediated on current in neruroblastoma cells and isolated adult mammalian neurons. Mol Pharmacol 40:263–270

    PubMed  CAS  Google Scholar 

  • Lucchi L, Covelli V, Anthopoulou H, Spano PF, Trabucchi M (1983) Effect of chronic ethanol treatment on adenylate cyclase activity in at striatum. Neurosci Lett 40:187–192

    PubMed  CAS  Google Scholar 

  • Lucchi L, Govoni S, Battaini F, Pasinetti G, Trabucchi (1985) Ethanol administration in vivo alters calcium ions control in rat striatal striatum. Brain Res 332:376–379

    PubMed  CAS  Google Scholar 

  • Lüddens H, Wisden W (1991) Function and pharmacology of multiple GABAA receptor subunits. Trends Pharmacol Sci 12:49–51

    PubMed  Google Scholar 

  • Lüddens H, Pritchett DB, Köhler M, Killisch I, Keinänen K, Monyer H, Sprengel R, Seeburg PH (1990) Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346:648–651

    PubMed  Google Scholar 

  • Lundquist F, Tygstrup N, Winkler K, Kresten M, Munck-Peterson S (1962) Ethanol metabolism and production of free acetate in the human liver. J Clin Invest 5:955–961

    Google Scholar 

  • Lukas S, Mendelson J (1986) Instrumental analysis of ethanol-induced intoxication in human males. Pyschopharmacology 89:8–13

    CAS  Google Scholar 

  • Lustig KD, Conklin BR, Herzmark P, Taussig R, Bourne HR (1993) Type II adenylate cyclase integrates conincident singnals from GS, and Gq. J Biol Chem 268:13900–13905

    PubMed  CAS  Google Scholar 

  • Luthin CR, Tabakoff B (1984) Activation of adenylate cyclase by alcohols requires the nucleotide-binding protein. J Pharmacol Exp Ther 228:579–587

    PubMed  CAS  Google Scholar 

  • Luttinger D, Nemeroff CB, Mason GA, Frye GD, Breese GR, Prange AJ Jr (1981) Enhancement of ethanol-induced sedation and hypothermia by centrally administered neurotensin,β-endorphin, and bombesin. Neuropharmacology 20:305–309

    PubMed  CAS  Google Scholar 

  • Lyon RC, Goldstein DB (1983) Changes in synaptic membrane order associated with chronic ethanol treatment in mice. Mol Pharmacol 23:86–91

    PubMed  CAS  Google Scholar 

  • MacDonald RL, Twyman RE, Ryan-Jastrow T, Angelotti TP (1992) Regulation of GABAA receptor channels by anticonvulsant and convulsant drugs and by phosphorylation. In: Engel J Jr, Wasterlain C, Cavalheiro EA, Heinemann U, Avanzini G (eds) Molecular neurobilogy of epilepsy (Epilepsy Res [Suppl] 9 ). Elsevier Science, Amsterdam, pp 265–277

    Google Scholar 

  • Machu TK, Olsen RE, Browning MD (1992) Ethanol has no effect on cAMPdependent protein kinase-, protein kinase C-, or Ca2+-calmodulin-dependent protein kinase II-stimulated phosphorylation of highly purified substrates in vitro. Alcohol Clin Exp Res 16:290–294

    Google Scholar 

  • Major LF, Ballenger JC, Goodwin FK, Brown GL (1977) Cerebrosponal fluid homovanillic acid in male alcoholics: effects of disulfiram. Biol Psych 12:635–642

    CAS  Google Scholar 

  • Makram H, Segal M (1992) Activation of protein kinase C suppresses response to NMDA in rat CA1 hippocampal neurones. J Physiol (Loud) 457:491–501

    Google Scholar 

  • Mardh G, Falchuk KH, Auld DS, Vallee BL (1986) Testosterone allostericlally regulates ethanol oxidation by homo- and heterodimeric y-subunit-containing isoenzymes of human alcohol dehydrogenase. Proc Natl Acad Sci USA 83:2836–2840

    PubMed  CAS  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    PubMed  CAS  Google Scholar 

  • Marks SS, Watson DL, Carpenter CL, Messing RO, Greenberg DA (1989) Comparative effects of chronic exposure to ethanol and calcium channel antagonists on calcium channel antagonist receptors in cultured neural (PC12) cells. J Neurochem 53:168–172

    PubMed  CAS  Google Scholar 

  • Marrosu F, Mereu G, Giorgi O, Corda MG (1988) The benzodiazepine recognition site inverse agonists Ro 15-4513 and G 7142 both antagonize the EEG effects of ethanol in the rat. Life Sci 43:2151–2158

    PubMed  CAS  Google Scholar 

  • Marshall AW, Kingstone D, Boss M, Morgan MY (1983) Ethanol elimination in males and females-relationship to menstrual cycle and body composition. Hepatology 3:701–706

    PubMed  CAS  Google Scholar 

  • Martin NG, Perl J, Oakeshott JG, Gibson JB, Starmer GA, Wilks AV (1985) A twin study of ethanol metabolism. Behav Genet 15:93–109

    PubMed  CAS  Google Scholar 

  • Mehta AK, Ticku MK (1988) Ethanol potentiation of GABAergic transmission in cultured spinal cord neurons involves y-aminobutyric acidA-gated chloride channels. J Pharmacol Exp Ther 246:558–564

    PubMed  CAS  Google Scholar 

  • Melchior CL, Collins MA (1982) The route and significance of endogenous synthesis of alkaloids in animals. CRC Crit Rev Toxicol 9:313–356

    CAS  Google Scholar 

  • Mereu G, Fadda F, Gessa GL (1984) Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292:63–69

    PubMed  CAS  Google Scholar 

  • Messing RO, Carpenter CL, Diamond I, Greenberg DA (1986) Ethanol regulates calcium channels in clonal neural cells. Proc Natl Acad Sci USA 83:6213–6215

    PubMed  CAS  Google Scholar 

  • Messing RO, Sneade AB, Savidge B (1990) Protein kinase C participates in upregulation of dihydropyridine-sensitive calcium channels by ethanol. J Neurochem 55:1383–1389

    PubMed  CAS  Google Scholar 

  • Messing RO, Petersen PJ, Henrich CJ (1991) Chronic ethanol exposure increases levels of protein kinase C delta and epsilon and protein kinase C-dedicated phosphorylation in cultured neural cells. J Biol Chem 266:23428–23432

    PubMed  CAS  Google Scholar 

  • Meyer HH (1901) Zur Theorie der Alcoholnarkose: der Einfluss wechselnder Temperatur auf wirkungsstarke und Teilungskoeffizient der Narkotica. Naunyn Schmiedebergs Arch Exp Pharmacol 46:990–993

    Google Scholar 

  • Mhatre MC, Ticku MJ (1992) Chronic ethanol administration alters y-aminobutyric AcidA receptor gene expression. Mol Pharmacol 42:415–422

    PubMed  CAS  Google Scholar 

  • Mhatre MC, Mehta AK, Ticku MK (1988) Chronic ethanol administration increases the binding of the benzodiazepine inverse agonist and alcohol antagonist [3H]Ro 15-4513 in rat brain. Eur J Pharmacol 153:141–145

    PubMed  CAS  Google Scholar 

  • Michaelis EK, Michaelis ML, Freed WK (1978) Effects of acute and chronic ethanol intake on synaptosomal glutamate binding activity. Biochem Pharmacol 27:1685–1691

    PubMed  CAS  Google Scholar 

  • Michaelis EK, Freed WK, Galton N, Foye J, Michaelis ML, Phillips I, Kleinman JE (1990) Glutamate receptor changes in brain synaptic membranes from human alcoholics. Neurochem Res 15:1055–1063

    PubMed  CAS  Google Scholar 

  • Milligan G, Green A (1991) Agonist control of G-protein levels. Trends Pharmacol Sci 12:207–209

    PubMed  CAS  Google Scholar 

  • Mochly-Rosen D, Change F-H, Cheever L, Kim M, Diamond I, Gordon AS (1988) Chronic ethanol causes heterologous desensitization of receptors by reducing αs messenger RNA. Nature 333:848–850

    PubMed  CAS  Google Scholar 

  • Montpied P, Morrow AL, Karanian JW, Ginns EI, Martin BM, Paul SM (1991) Prolonged ethanol inhalation decreases y-aminobutyric acidA receptor α subunit mRNAs in the rat cerebral cortex. Mol Pharmacol 39:157–163

    PubMed  CAS  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    PubMed  CAS  Google Scholar 

  • Moreno A, Pares X (1991) Purification and characterization of a new alcohol dehydrogenase from human stomach. J Biol Chem 266:1128–1133

    PubMed  CAS  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoteo R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37

    PubMed  CAS  Google Scholar 

  • Morrisett RA, Martin D, Wilson WA, Savage DD, Swartzwelder HS (1989) Prenatal exposure to ethanol decreases the sensitivity of the adult rat hippocampus to Nmethyl-D-aspartate. Alchol 6:415–420

    CAS  Google Scholar 

  • Morrisett RA, Rezvani AH, Overstreet, Wilson WA, Swartzwelder HS (1990) MK-801 potently inhibits alcohol withdrawal seizures in rats. Eur J Pharmacol 176:103–105

    PubMed  CAS  Google Scholar 

  • Morrisett RA, Martain D, Oetting TA, Lewis DV, Wilson WA, Swartzwelder HS (1991) Ethanol and magnesium ions inhibitN-methyl-D-aspartate-mediated synaptic potentials in an interactive manner. Neuropharmacology 30:1173–1178

    PubMed  CAS  Google Scholar 

  • Morrow AL, Suzdak PD, Karanian JW, Paul SW (1988) Chronic ethanol administration alters y-aminobutyric acid, pentobarbital and ethanol-mediated36C1-uptake in cerebral cortical synaptoneurosomes. J Pharmacol Exp Ther 246:158–164

    PubMed  CAS  Google Scholar 

  • Morrow AL, Herbert JS, Montpied P (1992) Differential effects of chronic ethanol administration on GABAA receptor αl and α6 subunit mRNA levels in rat cerebellum. Mol Cell Neurosci 3:251–258

    PubMed  CAS  Google Scholar 

  • Moss SJ, Smart TG, Blackstone CD, Huganir RL (1992a) Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257:661–665

    CAS  Google Scholar 

  • Moss SJ, Doherty CA, Huganir RL (1992b) Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of theβ1, y2L subunits of the y-aminobutyric acid type A receptor. J Biol Chem 267:14470–14476

    CAS  Google Scholar 

  • Murphy JM, Waller MB, Gatto GJ, McBride WJ, Lumeng L, Li TK (1988) Effects of fluoxetine on the intragastric self-administration of ethanol in the alcohol preferring P line of rats. Alcohol 5:283–286

    PubMed  CAS  Google Scholar 

  • Myers RD, Melchior CL (1977a) Alcohol drinking: abnormal intake caused by tetrahydropapaveroline in brain. Science 196:554–556

    CAS  Google Scholar 

  • Myers RD, Melchior CL (1977b) Differential action on voluntary alcohol intake of tetrahydroisoquinolines or a beta-carboline infused chronically in the ventricle of the rat. Pharmacol Biochem Behav 7:381–392

    CAS  Google Scholar 

  • Myers RD, McCalbe ML, Ruwe WD (1982) Alcohol drinking induced in the monkey by tetrahydropapaveroline (THP) infused into the cerebral ventricle. Pharmacol biochem Behav 16:995–1000

    PubMed  CAS  Google Scholar 

  • Naber D, Soble MG, Pickar D (1981) Ethanol increases opioid activity in plasma of normal volunteers. Pharmacopsychiatry 14:160–161

    CAS  Google Scholar 

  • Nagy LE, DeSilva SEF (1992) Ethanol increases receptor-dependent cyclic AMP production in cultured hepatocytes by decreasing Gi-mediated inhibition. Bochem J 286:681–686

    CAS  Google Scholar 

  • Nagy LE, Diamond I, Gordon A (1988) Cultured lymphocytes from alcoholic subjects have altered cAMP signal transduction. Proc Natl Acad Sci USA 85:6973–6976

    PubMed  CAS  Google Scholar 

  • Nagy LE, Diamond I, Collier K, Lopez L, Ullman B, Gordon AS (1989) Adenosine is required for ethanol-induced heterologous desensitization. Mol Pharmacol 36:744–748

    PubMed  CAS  Google Scholar 

  • Nagy LE, Diamond I, Casso DJ, Franklin C, Cordon AS (1990) Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter. J Biol Chem 265:1946–1951

    PubMed  CAS  Google Scholar 

  • Nagy LE, Diamond I, Gordon AS (1991) cAMP-dependent protein kinase regulates inhibition of adenosine transport by ethanol. Mol Pharmacol 40:812–817

    PubMed  CAS  Google Scholar 

  • Nakahiro M, Arakawa O, Narahashi T (1991) Modulation of y-aminobutyric acid receptor-channel complex by alcohols. J Pharmacol Exp Ther 259:235–240

    PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    PubMed  CAS  Google Scholar 

  • Naranjo CA, Sellers EM, Roach CA, Woodley DV, Sanchez-Craig M, Sykora K (1984) Zimelidine-induced variations in alcohol intake by non-depressed heavy drinkers. Clin Pharmacol Ther 35: 374 – 381

    PubMed  CAS  Google Scholar 

  • Naranjo CA, Seller EM, Sullivan JT, Woodley DV, Kalec K, Sykora K (1987) The serotonin uptake inhibitor citalopram attentuates ethanol intake. Clin Pharmacol Ther 41:374–266–274

    PubMed  CAS  Google Scholar 

  • Niemelä O, Klajner F, Orrego H, Vidins E, Blendis L, Israel Y (1987) Antibodies against acetaldehyde-modified protein epitopes in human alcoholics. Hepatology 7:1210–1214

    PubMed  Google Scholar 

  • Niemelä O, Juvonen T, Parkkila S (1991) Immunohistochemical demonstration of acetaldehyde-modified epitopes in human liver after alcohol consumption. J Clin Invest 87:1367–1374

    PubMed  Google Scholar 

  • Nutt DJ, Glue P (1986) Monoamines and alcohol. Br J Addict 81:327–338

    PubMed  CAS  Google Scholar 

  • Nutt DJ, Lister RG (1987) The effect of the imidazodiazepine Ro 15-4513 on the anticonvulsant effects of diazepam, sodium pentobarbital and ethanol. Brain Res 413:193–196

    PubMed  CAS  Google Scholar 

  • Nutt DJ, Lister RG, Rusche D, Bonetti EP, Reese RE, Rufener R (1988) Ro 15-4513 does not protect rats against the lethal effects of ethanol. Eur J Pharmacol 151:127–129

    PubMed  CAS  Google Scholar 

  • Ohmori T, Koyama T, Chen C, Yeh E, Reyes BV Jr, Yamashita I (1986) The role of aldehyde dehydrogenase isozyme variance in alcohol sensitivity, drinking habits formation and the development of alcoholism in Japan, Taiwan and the Phillippines. Prog Neuropsychopharmacol Biol Psychiatry 10:229–235

    PubMed  CAS  Google Scholar 

  • Ontko JA (1973) Effects of ethanol on the metabolism of free fatty acids in isolated liver cells. J Lipid Res 14:78–86

    PubMed  CAS  Google Scholar 

  • Orrego H, Carmichael FJ, Israel Y (1988) New insights on the mechanism of the alcohol-induced increase in portal blood flow. Can J Physiol Pharmacol 66:1–9

    PubMed  CAS  Google Scholar 

  • Overton E (1901) Studien über die Narkose Zugleich ein Beitrag zur allemeinen Pharmakologie. Fisher, Jena

    Google Scholar 

  • Palmer KR, Jenkins WJ (1982) Impaired acetaldehyde oxidation in alcoholics. Gut 23:729–733

    PubMed  CAS  Google Scholar 

  • Palmer KR, Jenkins WJ (1985) Aldehyde dehydrogenase in alcoholic subjects. Hepatology 5:260–263

    PubMed  CAS  Google Scholar 

  • Palmer MR, Morrow EL, Erwin VG (1987) Calcium differentially alters behavioral and electrophysiological responses to ethanol in selectively bred mouse lines. Alcohol Clin Exp Res 11: 457 – 463

    PubMed  CAS  Google Scholar 

  • Palmer MR, Van Horne CG, Harlan JT, Moore EA (1988) Antagonism of ethanol effects on cerebellar Purkinje neurons by the benzodiazepine inverse agonists Ro 15-4513 and FG 7142: electrophysiological studies. J Pharmacol Exp Ther 247:1018–1024

    PubMed  CAS  Google Scholar 

  • Park D, Jhon D-Y, Lee C-W, Lee K-H, Rhee SG (1993) Activation of phospholipase C isozymes by G proteinβy subunits. J Biol Chem 268:4573–4576

    PubMed  CAS  Google Scholar 

  • Peoples RW, Weight FF (1992) Ethanol inhibition ofN-methyl-D-aspartate-activated ion current in rat hippocampal neurons is not competitive with glycine. Brain Res 571:342–344

    PubMed  CAS  Google Scholar 

  • Perez-Reyes M, White WR, Hicks RE (1992) Interaction between ethanol and calcium channel blockers in humans. Alcohol Clin Exp Res 16:769–775

    PubMed  CAS  Google Scholar 

  • Perlman BJ, Goldstein DB (1984) Genetic influences on the central nervous system depressant and membrane-disordering actions of ethanol and sodium valproate. Mol Pharmacol 26:547–552

    PubMed  CAS  Google Scholar 

  • Peters JA, Malone HM, Lambert JJ (1992) Recent advances in the electrophysiological characterization of 5-HT3 receptors. Trends Pharmacol Sci 13:391–397

    PubMed  CAS  Google Scholar 

  • Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action ofN-methyl-Daspartate on cortical neurons. Science 236:589–593

    PubMed  CAS  Google Scholar 

  • Pfeiffer A, Seizinger BR, Herz A (1981) Chronic ethanol imbibition interferes with δ, but not with μ-opiate receptors. Neuropharmacology 20:1229–1232

    PubMed  CAS  Google Scholar 

  • Phillips TJ, Feller DJ, Crabbe JC (1989) Selected mouse lines, alcohol and behavior. Experientia 45:805–827

    PubMed  CAS  Google Scholar 

  • Polokoff MA, Simon TH, Harris RA, Simon FR, Iwahashi M (1985) Chronic ethanol increases liver plasma membrane fluidity. Biochemistry 24:3114–3120

    PubMed  CAS  Google Scholar 

  • Poulos CX, Cappel H (1991) Homeostatic theory of drug tolerance: a general model of physiological adaptation. Psychol Rev 98:390–408

    PubMed  CAS  Google Scholar 

  • Premont RT, Jacobowitz O, Iyengar R (1992) Lowered responsiveness of the catalyst of adenylyl cyclase to stimulation by the GS in heterologous desensitization: a role for adenosine 3′,5′-monophosphate-dependent phosphorylation. Endocrinology 131:2774–2784

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schoifield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    PubMed  CAS  Google Scholar 

  • Przewlocka B, Lason W, Przewlocki R (1992) Repeated ethanol administration decreases prodynorphin biosynthesis in the rat hippocampus. Neurosci Lett 134: 195 – 198

    PubMed  CAS  Google Scholar 

  • Pyne NJ, Freissmuth M, Palmer S (1992) Phosphorylation of the spliced variant forms of the recombinant stimulatory guanine-nucleotide-binding regulatory protein (Gαs) by protein kinase C. Biochem J 285:333–338

    PubMed  CAS  Google Scholar 

  • Rabe CS, Tabakoff B (1990) Glycine site directed agonists reverse ethanol’s actions at the NMDA receptor. Mol Pharmacol 38: 753 – 757

    PubMed  CAS  Google Scholar 

  • Rabe CS, Rathna Giri P, Hoffman PL, Tabakoff B (1990) Effect of ethanol on cyclic AMP levels in intact PC12 cells. Biochem Pharmacol 40:565–571

    PubMed  CAS  Google Scholar 

  • Rabin RA (1985) Effect of ethanol on inhibition of striatal adenylate cyclase activity. Biochem Pharmacol 34:4329–4331

    PubMed  CAS  Google Scholar 

  • Rabin RA (1988) Differential response of adenylate cyclase and ATPase activities after chronic ethanol exposure of PC12 cells. J Neurochem 51:1148–1155

    PubMed  CAS  Google Scholar 

  • Rabin RA (1990a) Direct effects of chronic ethanol exposure ofβ-adrenergic and adenosine -sesitive adenylate cyclase activities and cyclic AMP content in primary cerebellar cultures. J Neurochem 55:122–128

    CAS  Google Scholar 

  • Rabin RA (1990b) Chronic ethanol exposure of PC 12 cells alters adenylate cyclase activity and intracelular cyclic AMP content. J Pharmacol Exp Ther 252: 1021 – 1027

    CAS  Google Scholar 

  • Rabin RA (1993) Ethanol-induced desensitization of adenylate cyclase: role of the adenosine receptor and GTP-binding proteins. J Pharmacol Exp Ther 264:977–983

    PubMed  CAS  Google Scholar 

  • Rabin RA, Molinoff PB (1983) Multiple sites of action of ethanol on adenylate cyclase. J Pharmarol Exp Ther 227: 551 – 556

    CAS  Google Scholar 

  • Rabin RA, Wolfe BB, Dibner MD, Zahniser NR, Melchior C, Molinoff PB (1980) Effects of ethanol administration and withdrawal on neurotransmitter receptor systems in C57 mice. J Pharmacol Exp Ther 213:491–496

    PubMed  CAS  Google Scholar 

  • Rabin RA, Bode DC, Molinoff PB (1986) Relationship between ethanol-induced alterations in fluorescence anisotropy and adenylate cyclase activity. Biochem Pharmacol 35:2331–2335

    PubMed  CAS  Google Scholar 

  • Rabin RA, Baker RC, Deitrich RA (1987) Effects of chronic ethanol exposure on adenylate cyclase activities in the rat. Pharmacol Bocheem Behav 26:693–697

    CAS  Google Scholar 

  • Rabin RA, Edleman AM, Wagner JA (1992) Activation of protein kinase A is necessary but not sufficient for ethanol-induced desensitization of cyclic AMP production. J Pharmacol Exp Ther 262:257–262

    PubMed  CAS  Google Scholar 

  • Ramoa AS, Alkondon M, Aracava Y, Irons J, Lunt GG, Deshpande SS, Wonacott S, Aronstam RS, Albuquerque EX (1990) The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J Pharmacol Exp Ther 254:71–81

    PubMed  CAS  Google Scholar 

  • Rand ML, Vickers JD, Kinlough-Rathbone RL, Packham MA, Mustard JF (1988) Thrombin-induced inositol trisphosphate production by rabbit platelets is inhibited by ethanol. Biochem J 251:279–284

    PubMed  CAS  Google Scholar 

  • Ransnäs LA, Insel PA (1988) Quantitation of the guanine nucleotide binding regulatory protein GS in S49 cell membranes using antipeptide antibodies of αs. J Biol Chem 263:9482–9485

    Google Scholar 

  • Reynolds JN, Prasad A, MacDonald JF (1992) Ethanol modulation of GABA receptor-activated CI¯ currents in neurons of the chick, rat and mouse central nervous system. Eur J Pharmacol 224:173–181

    PubMed  CAS  Google Scholar 

  • Rhee SG, Choi KD (1992) Regulation of inositol phospholipid-specific phsopholipase C isozymes. J Biol Chem 267:12393–12396

    PubMed  CAS  Google Scholar 

  • Richelson E, Stenstrom S, Forrary C, Enloe L, Pfenning M (1986) Effects of chronic exposure to ethanol on the prostaglandin E1 receptor-mediated response and binding in a murine neuroblastoma clone (N1E-115). J Pharmacol Exp Ther 239:687–692

    PubMed  CAS  Google Scholar 

  • Rodriguez FD, Simonsson P, Gustavsson L, Alling C (1992) Mechanisms of adaptation to the effects of ethanol on activation of phospholipase C in NG 108-15 cells. Neuropharmacology 31:1157–1164

    PubMed  CAS  Google Scholar 

  • Ross EM, Howlett AC, Ferguson KM, Gilman G (1978) Reconstitution of hormonesensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem 253:6401–6412

    PubMed  CAS  Google Scholar 

  • Rottenberg H (1987) Partition of ethanol and other amphiphilic compounds modulated by chronic alcoholism. Ann NY Acad Sci 492:112–124

    PubMed  CAS  Google Scholar 

  • Rottenberg H, Bittman R, Li H-L (1992) Resistance to ethanol disordering of membranes from ethanol-fed rats is conferred by all phospholipid classes. Biochim Biophys Acta 1123:282–290

    PubMed  CAS  Google Scholar 

  • Rubin R, Hoek JB (1988) Alcohol-induced stimulation of phospholipase C in human platelets requires G-protein activation. Biochem J 254: 147 – 153

    PubMed  CAS  Google Scholar 

  • Ryder S, Straus E, Lieber CS, Yalow RS (1981) Cholecystokinin and enkephalin levels following ethanol administration in rats. Peptides 2:223–226

    PubMed  CAS  Google Scholar 

  • Saffey K, Gillman MA, Cantrill RC (1988) Chronic in vivo ethanol administration alters the sensitivity of adenylate cyclase coupling in homogenates of rat brain. Neurosci Lett 84:317–322

    PubMed  CAS  Google Scholar 

  • Saito T, Lee JM, Tabakoff B (1985) Ethanol’s effects on cortical adenylate cyclase activity. J Neurochem 44:1037–1044

    PubMed  CAS  Google Scholar 

  • Saito T, Lee JM, Hoffman PL, Tabakoff B (1987) Effects of chronic ethanol treatment on theβ-adrenergic receptor-coupled adenylate cyclase system of mouse cerebral cortex. J Neurochem 48:1817–1822

    PubMed  CAS  Google Scholar 

  • Samson HH, Hoffman PL (1995) The involvement of CNS catecholamines in alcohol self-administration tolerance and dependence: preclinical studies. In: Kranzler H (ed) Handbook of experimemtal pharmacology: the pharmacology of alcohol abuse. Springer, Berlin Heideberg New York, pp 121–137

    Google Scholar 

  • Samson HH, Tolliver CA, Schwaz-Stevens K (1990) Oral ethanol self-administration: A behavioral pharmacological approach to CNS control mechanism. Alcohol 7:187–197

    PubMed  CAS  Google Scholar 

  • Sarkar DK, Minami S (1990) Effect of acute ethanol on beta-endorphin secretion from rat fetal hypothalamic neurons in primary cultures. Life Sci 47:31–36

    Google Scholar 

  • Savage DD, Queen SA, Sanchez CF, Paxton LL, Mahoney JC, Goodlett CR, West JR (1991) Prenatal ethanol exposure during the last third of gestation in rat reduces hippocampal NMDA agonist binding site density in 45-day-old offspring. Alcohol 9:37–41

    Google Scholar 

  • Scanlon MN, Lazar-Wesley E, Grant KA, Kunos G (1992) Proopiomelanocortin messenger RNA is decreased in the mediobasal hypothalamus of rats made dependent on ethanol. Alcohol Clin Exp Res 16:1147–1151

    PubMed  CAS  Google Scholar 

  • Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14:13–20

    PubMed  CAS  Google Scholar 

  • Schroeder F, Morrison WJ, Gorka C, Wood WG (1988) Transbilayer effects of ethanol on fluidity of brain membrane leaflets. Biochim Biphys Acta 946:85–94

    CAS  Google Scholar 

  • Schulz R, Wuster M, Duka T, Herz A (1980) Acute and chronic ethanol treatment changes endorphin levels in brain and pituitary. Psychopharmacology 68:221–227

    PubMed  CAS  Google Scholar 

  • Scott RH, Sutton KG, Dolphin AC (1993) Interactions of polyamines with neuronal ion channels. Trends Neurosci 16:153–160

    PubMed  CAS  Google Scholar 

  • Seamon KB, Daly JW (1986) Forskolin: its biological and chemical properties. Adv Cyclic Nucl Prot Phos Res 20:1–150

    CAS  Google Scholar 

  • Seizinger BR, Boverman K, Maysinger D, Höllt V, Herz A (1983) Differential effects of acute and chronic ethanol treatment on particular opioid peptide systems in discrete regions of rat brain and pituitary. Pharmacol Biochem Behav 18:361–369

    PubMed  CAS  Google Scholar 

  • Seizinger BR, Höllt V, Herz A (1984a) Effects of chronic ethanol treatment on the in vitro biosynthesis of pro-opiomelanocortin and its post-translational processing toβ-endorphin in the intermediate lobe of the rat pituitary. J Neurochem 43:607–613

    CAS  Google Scholar 

  • Seizinger BR, Bovermann K, Höllt V, Herz A (1984b) Enhanced activity of the endorphinergic system in the anterior and neurointermediate lobe of the rat pituitary gland after chronic treatment with ethanol liquid diet. J Pharmacol Exp Ther 230:455–461

    CAS  Google Scholar 

  • Sessler FM, Mouradian RD, Cheng JT, Yeh HH, Liu W, Waterhouse BD (1989) Noradrenergic potentation of cerebellar Purkinje cells responses to GABA: evidence for mediation through the beta-adrenoceptor-coupled cyclic AMP system. Brain Res 499:27–38

    PubMed  CAS  Google Scholar 

  • Seventh Special Report to the US Congress on Alcohol and Health (1990) US Department of Health and Human Services. National Institute on Alcohol Abuse and Alcoholism, DHHS publication no (ADM) 90–1656

    Google Scholar 

  • Shah J, Pant HC (1988) Spontaneous calcium release induced by ethanol in the isolated rat brain microsomes. Brain Res 474:94–99

    PubMed  CAS  Google Scholar 

  • Shefner SA (1990) Electrophysiological effects of ethanol on brain neurons. In: Watson RR (ed) Biochemistry and physiology of substance abuse, vol II. CRC Press, Boca Raton, pp 25–52

    Google Scholar 

  • Shefner SA, Tabakoff B (1985) Basal firing rate of rat locus coeruleus neurons affects sensitivity to ethanol. Alchol 2:239–243

    CAS  Google Scholar 

  • Sieghart W (1992a) GABAA receptors: ligand-gated Cl¯ ion channels modulated by multiple drug-binding sites. Trends Pharmacol Sci 13:446–450

    CAS  Google Scholar 

  • Sieghart W (1992b) Molecular basis of pharmacological heterogeneity of GABAA receptors. Cell Signal 4:231–237

    CAS  Google Scholar 

  • Simonsson P, Rodriguez FD, Loman N, Alling C (1991) G proteins coupled to phospholipase C: molecular targets of long-term ethanol exposure. J Neurochem 56:2018–2026

    PubMed  CAS  Google Scholar 

  • Simson PE, Criswell HE, Johnson KB, Hicks RE, Breese GR (1991) Ethanol inhibits NMDA-evoked elecltrophysiological activity in vivo. J Pharmacol Exp Ther 257:225–231

    PubMed  CAS  Google Scholar 

  • Simson PE, Criswell HE, Breese GR (1993) Inhibition of NMDA-evoked electrophysiological activity be ethanol in selected brain regions: evidence for ethanol-sensitive and ethanol-insensitive NMDA-evoked responses. Brain Res 607:9–16

    PubMed  CAS  Google Scholar 

  • Sinclair JG, Lo GF (1978) Acute tolerance to ethanol on the release of acetylcholine from the cat cerebral cortex. Can J Physiol Pharmacol 56:668–670

    PubMed  CAS  Google Scholar 

  • Sippel HW 1974 The acetaldehyde content of rat brain during ethanol metabolism. J Neurochem 23:451–452

    PubMed  CAS  Google Scholar 

  • Skattebol A, Rabin RA (1987) Effects of ethanol on45Ca2+ uptake in synaptosomes and PC12 cells. Biochem Pharmacol 36:2227–2229

    PubMed  CAS  Google Scholar 

  • Skwish S, Shain W (1991) Ethanol and diolein stimulate PKC translocation in astroglial cells. Alcohol Clin Exp Res 15:1040–1044

    Google Scholar 

  • Slater SJ, Cox KJA, Lombardi JV, Ho C, Kelly MB, Rubin E, Stubbs CD (1993) Inhibition of protein kinase C by alcohols and anaesthetics. Nature 364:82–84

    PubMed  CAS  Google Scholar 

  • Smith M (1986) Genetics of human alcohol and aldehyde dehydrogenases. Adv Hum Genet 15:249–290

    PubMed  CAS  Google Scholar 

  • Smith M, Hopkinson DA, Harris H (1971) Developmental changes and polymorphisms in human alcohol dehydrogenase. Ann Hum Genet 34:251–271

    PubMed  CAS  Google Scholar 

  • Smith SG, Werner TE, Davis WM (1976) Comparison between intravenous and intragastric alcohol self-administration. Physiol Psychol 4:91–93

    Google Scholar 

  • Smith TL (1990) The effects of acute exposure to ethanol on neurotensin and guanine nucleotide-stimulation of phospholipase C activity in intact NIE-115 neuroblastoma cells. Life Sci 47:115–119

    Google Scholar 

  • Smith TL (1991) Selective effects of acute and chronic ethanol exposure on neuropeptide and guanine nucleotide stimulated phospholipase C activity in intact NIE-115 neuroblastoma. J Pharmacol Exp Ther 258:410–415

    PubMed  CAS  Google Scholar 

  • Snell LD, Tabakoff B, Hoffman PL (1993) Radioligand binding to the N-methyl-D-aspartate receptor/ionophore complex: alterations by ethanol in vitro and by chronic in vivo ethanol ingestion. Brain Res 602:91–98

    PubMed  CAS  Google Scholar 

  • Snell LD, Iorio KR, Tabakoff B, Hoffman PL (1994a) Protein kinase C activation attenuatesN-methyl-D-aspartate induced increases in intracellular calcium in cerebellar granule cells. J Neurochem 62:1783–1789

    CAS  Google Scholar 

  • Snell LD, Tabakoff B, Hoffman PL (1994b) Involvement of protein kinase C in ethanol-induced inhibition of NMDA receptor function in cerebellar granule cells. Alcohol Clin Exp Res 18:81–85

    CAS  Google Scholar 

  • Sommer B, Seeburg PH (1992) Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 13:291–296

    PubMed  CAS  Google Scholar 

  • Stenstrom S, Richelson E (1982) Acute effect of ethanol on prostaglandin E1- mediated cyclic AMP formation by a murine neuroblastoma clone. J Pharmacol Exp Ther 221:334–341

    PubMed  CAS  Google Scholar 

  • Stern P, Béhé P, Schoepfer R, Colquhoun D (1992) Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc R Soc Lond [Biol] 250:271–277

    CAS  Google Scholar 

  • Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259:13806–13813

    PubMed  CAS  Google Scholar 

  • Stowell A, Hillbom M, Salaspuro M, Lindros KO (1980) Low acetaldehyde levels in blood, breath and cerebrospinal fluid of intoxicated humans as assayed by improved methods. In: Thurman RG (ed) Alcohol and aldehyde metabolizing systems-IV. Plenum, New York, pp 635 – 645

    Google Scholar 

  • Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185:826–832

    PubMed  CAS  Google Scholar 

  • Sun GY, Sun AY (1977) Effect of chronic ethanol administration on phospholipid acyl groups of synaptic plasma membrane fraction isolated from guinea pig brain. Res Commun Chem Pathol Pharmacol 18:753–756

    Google Scholar 

  • Sun GY, Navidi M, Yoa FG, Wood WG, Sun AY (1993) Effects of chronic ethanol administration on polyphosphoinositide metabolism in the mouse brain: variance with age. Neurochem Int 22:11–17

    PubMed  CAS  Google Scholar 

  • Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM (1986a) A selective imidazobenzodiazepine antagonist of ethanol in rat. Science 234:1243–1247

    CAS  Google Scholar 

  • Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986b) Ethanol stimulates yaminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci USA 84:4071–4075

    Google Scholar 

  • Szabó G, Tabakoff B, Hoffman PL (1988) Receptors with V1 characteristics mediate the maintenance of ethanol tolerance by vasopressin. J Pharmacol Exp Ther 247:536–541

    PubMed  Google Scholar 

  • Szabó G, Tabakoff B, Hoffman PL (1994) The NMDA receptor antagonist, dizocilpine, differentially affects environment-dependent and environment-independent ethanol tolerance. Pyschopharmacology 113:511–517

    Google Scholar 

  • Tabakoff B (1989) Treatment of alcoholism. N Engl J Med 231: 400

    Google Scholar 

  • Tabakoff B, Hoffman PL (1979) Development of functional dependence on ethanol in dopaminergic systems. J Pharmacol Exp Ther 208:216–222

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Hoffman PL (1983) Alcohol interactions with brain opiate receptors. Life Sci 32:197–204

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Hoffman PL (1987) Biochemical pharmacology of alcohol. In: Meltzer HY (ed) Psychopharmacology — the third generation of progress. Raven, New York, pp 1521–1526

    Google Scholar 

  • Tabakoff B, Hoffman PL (1989) Genetics and biological markers of risk for alcoholism. In: Kiianmaa K, Tabakoff B, Saito T (eds) Genetic aspects of alcoholism. The Finnish foundation for alcohol studies, Helsinki, pp 127–142

    Google Scholar 

  • Tabakoff B, Hoffman PL (1992) Alcohol: Neurobiology. In: Lowinson JH, Ruiz P, Millman RB (eds) Substance abuse: a comprehensive textbook, 2nd edn. Williams and Wilkins. Baltimore, pp 152–185

    Google Scholar 

  • Tabakoff B, Kiianmaa K (1982) Does tolerance develop to the activating, as well as the depressant, effects of ethanol? Pharmacol Biochem Behav 17:1073–1076

    CAS  Google Scholar 

  • Tabakoff B, Ritzmann RF (1977) The effects of 6-hydroxydopamine on tolerance to and dependence on ethanol. J Pharmacol Exp Ther 203:319–332

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Rothstein JD (1983) Biology of tolerance and dependence. In: Tabakoff B, Sutker PB, Randall CL (eds) Medical and social aspects of alcohol abuse. Plenum, New York, pp 187–220

    Google Scholar 

  • Tabakoff B, von Wartburg J-P (1975) Separation of aldehyde reductases and alcohol dehydrogenase from brain by affinity chromatography: metabolism of succinic semialdehyde and ethanol. Biochem Biophys Res Commun 63:957–966

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Ungar F, Alivisatos SG (1972) Aldehyde derivatives of indoleamines and the enhancement of their binding onto brain macromolecules by pentobarbital and acetaldehyde. Nature New Biol 238:126–128

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Hoffman PL, Moses F (1977) Neurochemical correlates of ethanol withdrawal: alterations in serotonergic function. J Pharm Pharmacol 29:471–476

    PubMed  CAS  Google Scholar 

  • Tabkoff B, Munoz-Marcus M, Fields JZ (1979) Chronic ethanol feeding produces an increase in muscarinic cholinergic receptors in mouse brain. Life Sci 25:2173–2180

    Google Scholar 

  • Tabakoff B, Urwyler S, Hoffman PL (1981) Ethanol alters kinetic characteristics and function of striatal morphine receptors. J Neurochem 37:518–521

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Melchior CL, Hoffman PL (1982) Commentary on ethanol tolerance. Alcohol Clin Exp Res 6:252–259

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Cornell N, Hoffman PL (1986) Alcohol tolerance. Ann Emerg Med 15:1005–1012

    PubMed  CAS  Google Scholar 

  • Tabakoff B, Hoffman PL, McLaughlin A (1988a) Is ethanol a discriminating substance? Semin Liver Dis 8: 26 – 35

    CAS  Google Scholar 

  • Tabakoff B, Hoffman PL, Lee JM, Saito T, Willard B, De Leon-Jones F (1988b) Differences in platelet enzyme activity between alcoholics and nonalcoholics. N Engl J Med 318:134–139

    CAS  Google Scholar 

  • Tabakoff B, Whelan JP, Hoffman PL (1990) Two biological markers of alcoholism. Banbury Rep 33:195–204

    Google Scholar 

  • Tabakoff B, Rabe CS, Hoffman PL (1991) Selective effects of sedative/hypnotic drugs on excitatory amino acid receptors in brain. Ann NY Acad Sci 625:488–495

    PubMed  CAS  Google Scholar 

  • Takadera T, Suzuki R, Mohri T (1990) Protection by ethanol of cortical neurons from N-methyl-D-aspartate-induced neurotoxicity is associated with blocking calcium influx. Brain Res 537:109–115

    PubMed  CAS  Google Scholar 

  • Tang W-J, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G proteinβysubunits. Science 254:1500–1503

    PubMed  CAS  Google Scholar 

  • Tang W-J, Gilman AG (1992) Adenylyl cyclases. Cell 70:869–872

    PubMed  CAS  Google Scholar 

  • Taraschi TF, Ellingson JS, Wu A, Zimmerman R, Rubin E (1986) Membrane tolerance to ethanol is rapidly lost after withdrawal; a model for studies of membrane adaptation. Proc Natl Acad Sci USA 83:3669–3673

    PubMed  CAS  Google Scholar 

  • Taussig R, Quarmby LA, Gilman G (1993a) Regulation of purified type I and type II adenylylcyclases by G proteinβysubunits. J Biol Chem 268:9–12

    CAS  Google Scholar 

  • Taussig R, Iñiguez-Lluhi JA, Gilman AG (1993b) Inhibition of adenylyl cyclase by G. Science 261:218–221

    CAS  Google Scholar 

  • Thomasson HR, Li T-K, Crabb DW (1990) Correlation between alcohol-induced flushing, genotypes for alcohol and aldehyde dyhydrogenases, and alcohol elimination rates. Hepatology 12:903

    Google Scholar 

  • Thomasson HR, Edenberg JH, Crabb DW, Mai X-L, Jerome RE, Li T-K, Wang S-P, Lin Y-T, Lu RB, Yin SJ (1991) Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am J Hum Genet 48:677–681

    PubMed  CAS  Google Scholar 

  • Tottmar SOC, Pettersson H, Kiessling K-H (1973) The subcellular distribution and properties of aldehyde dehydrogenases in rat liver. Biochem J 135:577–586

    PubMed  CAS  Google Scholar 

  • Treistman SN, Wilson A (1991) Effects of chronic ethanol on currents carried through calcium channels in Aplysia. Alcohol Clin Exp Res 15:489–493

    PubMed  CAS  Google Scholar 

  • Treistman SN, Moynihan MM, Wolf De (1987) Influence of alcohol, temperature, and region on the mobility of lipids in neuronal membrane. Biochim Biophys Acta 898:109–120

    PubMed  CAS  Google Scholar 

  • Twombly DA, Herman MD, Kye CH, Narahasi T (1990) Ethanol effects on two types of voltage-activated calcium channels. J Pharmacol Exp Ther 254:1029–1037

    PubMed  CAS  Google Scholar 

  • Uhl G, Blum K, Noble E, Smith S (1993) Substance abuse vulnerability and D2 receptor genes. Trends Neurosci 16:83–88

    PubMed  CAS  Google Scholar 

  • Unwin N (1993) Neurotransmitter action: opening of ligand-gated ion channels. Cell 27:31–41

    Google Scholar 

  • Urushihara H, Tohda M, Nomura Y (1992) Selective potentiation of N-methyl-Daspartate-induced current by protein kinase C in Xenopus oocytes injected with rat brain RNA. J Biol Chem 267:11697–11700

    PubMed  CAS  Google Scholar 

  • Valverius P, Hoffman PL, Tabakoff B (1987) Effect of ethanol on mouse cerebral corticalβ-adrenergic receptors. Mol Pharmacol 32:217–222

    PubMed  CAS  Google Scholar 

  • Valverius P, Hoffman PL, Tabakoff B (1988)β-adrenergic receptor binding in brain of alcoholics. Exp Neurol 105:280–286

    Google Scholar 

  • Valverius P, Hoffman PL, Tabakoff B (1989a) Hippocampal and cerebellarβ-adrenergic receptors and adenylate cyclase are differentially altered by chronic ethanol ingestion. J Neurochem 52:492–497

    CAS  Google Scholar 

  • Valverius P, Hoffman PL, Tabakoff B (1989b) Brain forskolin binding in mice dependent on and tolerant to ethanol. Brain Res 503:38–43

    CAS  Google Scholar 

  • Valverius P, Crabbe JC, Hoffman PL, Tabakoff B (1990) NMDA receptors in mice bred to be prone or resistant to ethanol withdrawal seizures. Eur J Pharmacol 184:185–189

    PubMed  CAS  Google Scholar 

  • van Thiel DH, Lester R (1976) Alcoholism: its effect on hypothalamic pituitary gonadal function. Gastroenterology 71:318–327

    PubMed  Google Scholar 

  • Vescovi PP, Coiro V, Volpi, Giannini A, Passeri M (1992) Plasmaβ-endorphin, but not met-enkephalin levels are abnormal in chronic alcoholics. Alcohol Alcohol 27:471–475

    PubMed  CAS  Google Scholar 

  • Vinay P, Cardoso M, Tejedor A, Prud’homme M, Levelillee M, Vinet B, Courteau M, Gougoux A, Rengel M, Lapierre L, Piette Y (1987) Acetate metabolism during hemodialysis: metabolic considerations. Am J Nephrol 7:337–354

    PubMed  CAS  Google Scholar 

  • Volpicelli JR, Alterman AI, Hayashida M, O’Brien CP (1992) Naltrexone in the treatment of alchohol dependence. Arch Gen Psychiatry 49:876–880

    PubMed  CAS  Google Scholar 

  • Voltaire-Carlsson A, Hiltunen A, Beck O, Borg S (1993) Clinical ratings, self-reports and urinary 5-hydroxytryptophol in relation to relapse in alcohol dependent male patients. Alcohol Alcohol 28:252

    Google Scholar 

  • von Knorring A-L, Bohman M, von Knorring L, Oreland L (1985) Platelet MAO activity as a biological marker in subgroups of alcoholism. Acta Psychiat Scand 72:52

    Google Scholar 

  • von Wartburg J-P (1976) Biochemische auswirkungen des alkoholkonsums. Bibl Nutr Dieta 24:7–16

    PubMed  Google Scholar 

  • von Wartburg J-P, Schurch PM (1968) Atypical human liver alcohol dehydrogenase. Ann NY Acad Sci 151:937–946

    Google Scholar 

  • von Wartburg J-P, Papenberg J, Aebi H (1965) An atypical human alcohol dehydrogenase. Can J Biochem 43:889–898

    Google Scholar 

  • Wafford KA, Whiting PJ (1992) Ethanol potentiation of GABAA receptors requires phosphorylation of the alternatively spliced variant of the gamma 2 subunit. FEBS Lett 313:113–117

    PubMed  CAS  Google Scholar 

  • Wafford KA, Burnett DM, Dunwiddie TV, Harris RA (1990) Genetic differences in the ethanol sensitivity of GABAA receptors expressed in Xenopus oocytes. Science 249:291–293

    PubMed  CAS  Google Scholar 

  • Wafford KA, Burnett DM, Leidenheimer NJ, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, Sikela JM (1991) Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires eight amino acids contained in the y2L subunit of the receptor complex. Neuron 7:27–33

    PubMed  CAS  Google Scholar 

  • Wagner FW, Pares X, Holmquist B, Vallee BL (1984) Physical and enzymatic properties of a class III isoenzyme of human liver alcohol dehydrogenase:Χ-ADH. Biochemistry 23:2193–2199

    PubMed  CAS  Google Scholar 

  • Waltman C, Levine MA, McCaul ME, Svikis DS, Wand GS (1993) Enhanced expression of the inhibitory protein G and decreased activity of adenylyl cyclase in lymphocytes of abstinent alcoholics. Alcohol Clin Exp Res 17:315–320

    PubMed  CAS  Google Scholar 

  • Wand GS, Levine MA (1991) Hormonal tolerance to ethanol is associated with decreased expression of the GTP-binding protein, G;, and adenylyl cyclase activity in ethanol-treated mice. Alcohol Clin Exp Res 15:705–710

    PubMed  CAS  Google Scholar 

  • Wand GS, Diehl AM, Levine MA, Wolfgang D, Samy S (1993) Chronic ethanol treatment increases expression of inhibitory G-proteins and reduces adenylylcyclase activity in the central nervous system of two lines of ethanolsensitive mice. J Biol Chem 268:2595–2601

    PubMed  CAS  Google Scholar 

  • Wang X, Lemos JR, Dayanithi G, Nordmann JJ, Treistman SN (1991) Ethanol reduces vasopressin release by inhibiting calcium currents in nerve terminals. Brain Res 551:338–341

    PubMed  CAS  Google Scholar 

  • Waring AJ, Rottenberg H, Ohnishi T, Rubin E (1981) Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disordering by alcohol. Proc Natl Acad Sci USA 78:2582–2586

    PubMed  CAS  Google Scholar 

  • Watanabe M, Inoue Y, Sakimura K, Mishina M (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Dev Neurosci 3:1138–1140

    CAS  Google Scholar 

  • Weight FF, Lovinger DM, White G, Peoples RW (1991) Alcohol and anesthetic actions on excitatory amino acid-activated ion channels. Ann NY Acad Sci 625:97–107

    PubMed  CAS  Google Scholar 

  • Weiner H, Flynn TG (1988) Nomenclature of mammalian aldehyde dehydrogenases. In: Weiner H, Flynn TG (eds) Enzymology and molecular biology of carbonyl metabolism. Liss, New York, pp xix–xxi

    Google Scholar 

  • Whelan JP, Hoffman PL, Tabakoff B (1991) Effects of chronic ethanol exposure on G-proteins in mouse brain membranes. Alcohol Clin Exp Res 15:333

    Google Scholar 

  • White GD, Lovinger DM, Weight FF (1990a) Ethanol inhibits NMDA-activated current but does not affect GABA-activated current in an isolated adult mammalian neuron. Brain Res 507:332–336

    CAS  Google Scholar 

  • White GD, Lovinger DM, Grant KA (1990b) Ethanol (EtOH) inhibition of NMDAactivated ion current is not altered after chronic exposure of rats or neurons in culture. Alcohol Clin Exp Res 14:352

    Google Scholar 

  • White JM, Smith AM (1992) Modification of the behavioral effects of ethanol by nifedipine. Alcohol Alcohol 27:137–141

    PubMed  CAS  Google Scholar 

  • Whittington MA, Little HJ (1991) Nitrendipine, given during drinking, decreases the electrophysiological changes in the isolated hippocampal slice, seen during ethanol withdrawal. Br J Pharmacol 103:1677–1684

    PubMed  CAS  Google Scholar 

  • Widmark EMP (1933) Der einfluss der nahrungsbestandteile auf den alcoholgehalt des blutes. Biochem Z 267:135–151

    CAS  Google Scholar 

  • Williams K, Dichter MA, Molinoff PB (1992) Up-regulation ofN-methyl-D-aspartate receptors on cultured cortical neurons after exposure to antagonists. Mol Pharmacol 42:147–151

    PubMed  CAS  Google Scholar 

  • Williams RJ, Veale MA, Horne P, Kelly E (1993) Ethanol differentially regulates guanine nucleotide-binding protein α subunit expression in NG108-15 cells independently of extracellular adenosine. Mol Pharmacol 43:158–166

    PubMed  CAS  Google Scholar 

  • Wise RA (1978) Catecholamine theories of reward: a critical review. Brain Res 152:215–247

    PubMed  CAS  Google Scholar 

  • Wong YH, Conklin BR, Bourne HR (1992) GZ-mediated hormonal inhibition of cyclic AMP accumulation. Science 255:339–342

    PubMed  CAS  Google Scholar 

  • Wood WG, Schroeder F (1988) Membrane effects of ethanol: bulk lipid versus lipid domains. Life Sci 43:467–475

    PubMed  CAS  Google Scholar 

  • Wood WG, Gorka C, Schroeder F (1989) Acute and chronic effects of ethanol on transbilayer membrane domains. J Neurochem 52:1925–1930

    PubMed  CAS  Google Scholar 

  • Wood WG, Schroeder F, Hogy L, Rao AM, Nemecz G (1990) Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption. Biochim Biophys Acta 1025:243–246

    PubMed  CAS  Google Scholar 

  • Wood WG, Gorka C, Johnson JA, Sun GY, Sun AY, Schroeder F (1991) Chronic ethanol consumption alters transbilayer distribution of phosphatidylcholine in erythrocytes of Sinclair (S-1) miniature swine. Alcohol 8:395–399

    PubMed  CAS  Google Scholar 

  • Woodward JJ, Gonzales RA (1990) Ethanol inhibition ofN-methyl-D-aspartate stimulated endogenous dopamine release from rat striatal slices: reversal by glycine. J Neurochem 54:712–715

    PubMed  CAS  Google Scholar 

  • Woodward JJ, Machu T, Leslie SW (1990) Chronic ethanol treatment alters ω-conotoxin and Bay K 8644 sensitive calcium channels in rat striatal synaptosomes. Alcohol 7:279–284

    PubMed  CAS  Google Scholar 

  • Wozniak KM, Pert A, Linnoila M (1990) Antagonism of 5-HT3 receptors attenuates the effects of ethanol on extracellular dopamine. Eur J Pharmacol 187:287–289

    PubMed  CAS  Google Scholar 

  • Wozniak KM, Pert A, Mele A, Linnoila M (1991) Focal application of alcohols elevates extracellular dopamine in rat brain: a microdialysis study. Brain Res 540:31–40

    PubMed  CAS  Google Scholar 

  • Wu PH, Pham T, Naranjo CA (1987) Nifedipine delays the acquisition of tolerance to ethanol. Eur J Pharmacol 139:233–236

    PubMed  CAS  Google Scholar 

  • Yamazaki M, Mori H, Araki K, Mori KJ, Mishina M (1992) Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett 300:39–45

    PubMed  CAS  Google Scholar 

  • Yoshida A, Huang I-Y, Ikawa M (1984) Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA 81:258–261

    PubMed  CAS  Google Scholar 

  • Yuki T, Thurman RG (1980) The swift increase in alcohol metabolism. Time course for the increase in hepatic oxygen uptake and the involvement of glycolysis. Biochem J 186:119–126

    PubMed  CAS  Google Scholar 

  • Yurttas L, Dale BE, Klemm WR (1992) FTIR evidence for alcohol binding and dehydration in phospholipid and ganglioside micelles. Alcohol Clin Exp Res 16:863–869

    PubMed  CAS  Google Scholar 

  • Zahniser NR, Buck KJ, Curella P, McQuilken SJ, Wilson-Shaw D, Miller CL, Klein RL, Heidenreich KA, Keir WJ, Sikela JM, Harris RA (1992) GABAA receptor function and regional analysis of subunit mRNAs in long-sleep and short-sleep mouse brain. Mol Brain Res 14:196–206

    PubMed  CAS  Google Scholar 

  • Zingg HH, Lefebre D, Almazan G (1988) Regulation of vasopressin gene expression in rat hypothalamic neurons. J Biol Chem 261:12956–12959

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tabakoff, B., Hellevuo, K., Hoffman, P.L. (1996). Alcohol. In: Schuster, C.R., Kuhar, M.J. (eds) Pharmacological Aspects of Drug Dependence. Handbook of Experimental Pharmacology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60963-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60963-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64631-7

  • Online ISBN: 978-3-642-60963-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics