Skip to main content

Abstract

The signal perceived by the ear is the sound wave. The physical description of this phenomenon is called acoustics. The anatomical, biochemical, and physiological processes of hearing are called auditory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashmore JF (1987) A fast motile response in guinea pig outer hair cells; the cellular basis of the cochlear amplifier. J Physiol (Lond) 388:323–347

    CAS  Google Scholar 

  2. Ashmore JF, Meech RW (1986) ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322:368–371

    Article  PubMed  Google Scholar 

  3. Brownell WE, Bader CR, Bertrand D, Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    Article  PubMed  CAS  Google Scholar 

  4. Cody, AR, Russell JI (1987) The responses of hair cells in the basal turn of the guinea pig cochlea to tones. J Physiol 388:551–569

    Google Scholar 

  5. Dallos P (1985) Response characteristics of mammalian cochlear hair cells. J Neurosci 5:1591–1608

    PubMed  CAS  Google Scholar 

  6. Dallos P, Santos-Sacchi J, Flock Å (1982) Intracellular recordings from cochlear outer hair cells. Science 218:582–584

    Article  PubMed  CAS  Google Scholar 

  7. Dallos P, Evans BN, Hallworth R (1991) Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350:155–157

    Article  PubMed  CAS  Google Scholar 

  8. Davis H (1957) Biophysics and physiology of the inner ear. Physiol Rev 37:1

    PubMed  CAS  Google Scholar 

  9. Davis H (1958) Transmission and transduction in the cochlea. Laryngoscope 68:359–382

    PubMed  CAS  Google Scholar 

  10. Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harbor Symp Quant Biol 30:181–190

    Article  PubMed  CAS  Google Scholar 

  11. De Boer E (1983) No sharpening? A challenge for cochlear mechanics.J Acoust Soc Am 73:567–573

    Article  PubMed  Google Scholar 

  12. De Boer E (1983) On active and passive cochlear models -towards a generalized analysis. J Acoust Soc Am 73:574–576

    Article  PubMed  Google Scholar 

  13. Evans EF (1975) The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology 14:419–442

    Article  PubMed  CAS  Google Scholar 

  14. Evans EF (1975b) Cochlear nerve and cochlear nucleus. In: Keidel WD Neff WD (eds) Handbook of sensory physiology vol 5, part 2. Springer, Berlin Heidelberg New York, pp 1–108

    Google Scholar 

  15. Feldmann AS (1967) Acoustic impedance studies of the normal ear. J Speech Res 10:165

    Google Scholar 

  16. Feldmann H, Steinmann G (1968) Die Bedeutung des Äußeren Ohres für das Hören im Wind. Arch. Ohren Nasen Kehlkopf Heilkd 190:69

    CAS  Google Scholar 

  17. Fex J (1968) Efferent inhibition in the cochlea by the olivocochlear bundle. In: de Reuck AVS, Knight J. (eds) Ciba Foundation symposium. Churchill, London, pp 169–181

    Google Scholar 

  18. Fex J, Altschuler RA (1986) Neurotransmitter-related immu-nocytochemistry of the organ of Corti. Hear Res 22:249–263

    Article  PubMed  CAS  Google Scholar 

  19. Flanagan JL (1962) Computational model for basilar membrane displacement J Acoust Soc Am 34:1370

    Article  Google Scholar 

  20. Geisler DC (1991) A cochlear model using feedback from motile outer hair cells. Hear Res 54:105–117

    Article  PubMed  CAS  Google Scholar 

  21. Genuit K (1984) Ein Modell zur Beschreibung von Außenohrübertragungseigenschaften. Dissertation, Fakultät für Elektrotechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen

    Google Scholar 

  22. Gitter AH, Zenner HP, Frömter E (1986) Membrane potential and ion channels in isolated outer hair cells of Guinea pig cochlea. ORL 48:68–75

    Article  PubMed  CAS  Google Scholar 

  23. Guinan J, Peake WT (1967) Middle ear characteristics of anesthetized cats. J Acoust Soc Am 41:1237–1261

    Article  PubMed  Google Scholar 

  24. Gummer AW, Johnstone BM, Armstrong NJ (1981) Direct measurement of basilar membrane stiffnes in the guinea pig. J Acoust Soc Am 70:1298–1309

    Article  Google Scholar 

  25. Harris GG (1968) Brownian motion in the cochlear partition. J Acoust Soc Am 44:176–186

    Article  PubMed  CAS  Google Scholar 

  26. Honrubia V, Ward PH (1969) Properties of the summating potential of the guinea pig’s cochlea. J Acoust Soc Am 45:1443–1450

    Article  PubMed  CAS  Google Scholar 

  27. Hudde H, Pösselt C (1988) Die Bedeutung des äußeren Ohres für das räumliche Hören beim Menschen aus der Sicht des Ingenieurwissenschaftlers. HNO 36:215–220

    PubMed  CAS  Google Scholar 

  28. Hudspeth AJ (1988) Biophysical studies of transduction by vertebrate hair cells. In: Eisner N, Barth FG (eds) Sense organs. Thieme, Stuttgart, pp 41–46

    Google Scholar 

  29. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404

    Article  PubMed  CAS  Google Scholar 

  30. Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76:1506–1509

    Article  PubMed  CAS  Google Scholar 

  31. Huizing EH (1960) Bone conduction — the influence of the middle ear. Acta Otolaryngol. Suppl (Stockh) 155:1

    CAS  Google Scholar 

  32. Kemp DT (1978) Stimulated acoustic emission from within the human auditory system. J Acoust Soc Am 64:1386–1391

    Article  PubMed  CAS  Google Scholar 

  33. Khanna SM, Tonndorf J (1972) Tympanic membrane vibration in cats studied by time-averaged holography. J Acoust Soc Am 51:1904–1920

    Article  PubMed  CAS  Google Scholar 

  34. Khanna SM, Leonard DGB (1982) Laser interferometric measurements of basilar membrane vibrations in cats. Science 215:305–306

    Article  PubMed  CAS  Google Scholar 

  35. Killion MC, Dallos P (1979) Impedance matching by the combined effects of the outer and middle ear. J Acoust Soc Am 66:599

    Article  Google Scholar 

  36. Klinke R (1986) Neurotransmission in the inner ear. Hear Res 22:235–243

    Article  PubMed  CAS  Google Scholar 

  37. Klinke R (1987a) Die Verarbeitung von Schallreizen im Innenohr. HNO 35:139–148

    PubMed  CAS  Google Scholar 

  38. Klinke R (1987b) Gleichgewichtssinn, Hören, Sprechen. In: Schmidt RF, Thews G (eds) Physiologie des Menschen. Springer, Berlin Heidelberg New York, pp 291–319

    Google Scholar 

  39. Klinke R, Galley N (1974) Efferent innervation of vestibular and auditory receptors. Physiol Rev 54:316–357

    PubMed  CAS  Google Scholar 

  40. Kumpf W, Hoke M (1970) Ein konstantes Ohrgeräusch bei 4000 Hz. Arch Klin Exp Ohren Nasen Kehlkopf Heilkd 196:243–247

    Article  CAS  Google Scholar 

  41. Lehnhardt E (1959) Der Einfluß der Binneno-hrmuskeltätigkeit auf die Empfindlichkeitskurve des Ohres. Arch Ohr Nasen Kehlkopf Heilkd 175:383

    Article  CAS  Google Scholar 

  42. Lehnhardt E (1960) Über das Richtungshören des Menschen. Elektroakustische Versuche mit kleinsten Zeitdifferenzen. HNO 8:353

    PubMed  CAS  Google Scholar 

  43. Lehnhardt E (1960) Weitere Untersuchungen Über den Einfluß der Innenohrmuskeltätigkeit auf die Empfindlichkeitskurve des Ohres. Acta Otolaryngol. 52:438

    Article  PubMed  CAS  Google Scholar 

  44. Lehnhardt E (1965) Physiologie des Mittelohres. In: Beren-des J, Link R, Zöllner F (eds) Hals-Nasen-Ohren-Heikunde. Thieme, Stuttgart

    Google Scholar 

  45. Lehnhardt E (1980) Physiologie der Schalleitung einschließlich Ohrtrompete. In: Berendes J, Link R, Zöllner F (1980) Hals-Nasen-Ohrenheilkunde in Klinik und Praxis. Thieme, Stuttgart

    Google Scholar 

  46. Lehnhardt E, Albrecht H, Müller W (1961) Meßtechnischer und theoretischer Beitrag zum Schwingungs- und Impulsverhalten des Mittelohres. Arch. Ohren Nasen Kehldopf Heilkd 179:1

    Article  CAS  Google Scholar 

  47. LePage EL (1987) Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea. J Acoust Soc Am 82:139–154

    Article  PubMed  CAS  Google Scholar 

  48. LePage EW Johnstone MB (1980) Non-linear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochela. Hear Res 2:183–189

    Article  CAS  Google Scholar 

  49. Møller AR (1963) Transfer function of the middle ear. J Acoust Soc Am 35:1526

    Article  Google Scholar 

  50. Møller AR (1965) An experimental study of the acoustic impedance of the middle ear and its transmission properties. Acta Otolaryngol 60:129–149

    Article  PubMed  Google Scholar 

  51. Mundie JR (1963) The impedance of the ear. A variable quantity. In: Fletcher JL (ed) Middle ear function seminar. US Army Medical Research Laboratory, Wright-Patterson Air Force Base, OH

    Google Scholar 

  52. Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689

    Article  PubMed  CAS  Google Scholar 

  53. Neely ST, Kim DO (1986) A model for active elements in cochlear biomechanics. J Acoust Soc Am 79:1472–1480

    Article  PubMed  CAS  Google Scholar 

  54. Pang XD, Peake WT (1986) How do contractions of the stapedius muscle alter the acoustic properties of the ear? In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Springer, Berlin Heidelbery New York, pp 36–43

    Chapter  Google Scholar 

  55. Patuzzi RB, Yates GK (1987) The low-frequency response of inner hair cells in the guinea pig cochlea: implications for fluid coupling and resonance of the stereocilia. Hear Res 30:83–98

    Article  PubMed  CAS  Google Scholar 

  56. Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112

    Article  PubMed  CAS  Google Scholar 

  57. Plinkert PK, Zenner HP (1989) Acetylcholine receptors in outer hair cells and their possible significance for cochlear biomechanics. Twelfth midwinter meeting, Association for Research in Otolaryngology, St Petersburg Beach, Florida, USA

    Google Scholar 

  58. Plinkert PK, Möhler H, Zenner HP (1989) A subpopulation of outer hair cells possessing GABA receptors with tonotopic organization. Arch Otorhino-laryngol 246:417–422

    Article  CAS  Google Scholar 

  59. Plinkert PK, Gitter AH, Zenner HP (1991) GABAA-receptors in cochlear outer hair cells. Hear Res

    Google Scholar 

  60. Puel J-L, Ladrech S, Chabert R, Pujol R, Eybalin M (1991) Electrophysiological evidence for the presence of NMDA receptors in the guinea pig cochlea. Hear Res 51:255–264

    Article  PubMed  CAS  Google Scholar 

  61. Reuter G, Zenner HP (1990) Active radial and transverse motile responses of outer hair cells in the organ of Corti. Hear Res 43:219–230

    Article  PubMed  CAS  Google Scholar 

  62. Rose JE, Hind JE, Anderson DJ, Brugge JF (1971) Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J Neurophysiol 34:685–699

    PubMed  CAS  Google Scholar 

  63. Rosowski JJ, Carney LH, Lynch TJ, Peake WT (1986) The effectiveness of external and middle ears in coupling acoustic power into the cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A: Peripheral auditory mechanisms. Springer, Berlin Heidelberg New York, pp 3–12

    Chapter  Google Scholar 

  64. Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol (Lond) 284:261–290

    CAS  Google Scholar 

  65. Russell IJ, Cody AR, Richardson GP (1986) The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea grown in vitro. Hear Res 22:199–216

    Article  PubMed  CAS  Google Scholar 

  66. Schmidt RF (ed) (1993) Neuro- und Sinnesphysiologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  67. Sellick PM, Russell IJ (1980) The responses of inner hair cells to basilar membrane velocity during low-frequency auditory stimulation in the guinea pig. Hear Res 2:439–445

    Article  PubMed  CAS  Google Scholar 

  68. Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mößbauer technique. J Acoust Soc Am 72:131–141

    Article  PubMed  CAS  Google Scholar 

  69. Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol 5, part 2. Springer, Berlin Heidelberg New York, pp 455–490

    Google Scholar 

  70. Shaw EAG, Stinson MR (1983) The human external and middle ear: models and concepts. In: de Boer E, Viergever MA (eds) Mechanics of hearing. Nijhoff, the Hague, pp 3–18

    Google Scholar 

  71. Siegel J, Dallos HP (1986) Spike activity recorded from the organ of Corti. Hear. Res. 22:245–248

    Article  PubMed  CAS  Google Scholar 

  72. Simmons FB (1964) Perceptual theories of middle ear muscle function. Ann Otorhinolaryngol 73:724–740

    CAS  Google Scholar 

  73. Spoendlin H, Gacek R (1963) Electron microscopic studies of the efferent and afferent innervation of the organ of Corti in the cat. Ann. Otolaryngol 72:660–686

    CAS  Google Scholar 

  74. Suga N, Neuweiler G, Müller J (1976) Peripheral auditory tuning for fine frequency analysis by the DF-FM bat, Rhionolophus ferrumequinum. J Comp Physiol 106:111–125

    Article  Google Scholar 

  75. Tonndorf J (1972) Bone conduction. In: Tobias JV (ed) Foundations of modern auditory theory, vol 2. Academic, New York

    Google Scholar 

  76. Tonndorf J, Khanna SM (1967) Some properties of sound transmission in the middle ear and outer ear of cats. J Acoust Soc Am 41:513

    Article  PubMed  CAS  Google Scholar 

  77. Tonndorf J, Khanna SM (1968) Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a Laser inferometer. J Acoust Soc Am 44:1546

    Article  PubMed  CAS  Google Scholar 

  78. Tonndorf J, Khanna SM (1970) The role of the tympanic membrane in middle ear transmission. Ann Otol 79:743

    CAS  Google Scholar 

  79. Tonndorf J, Khanna SM (1971) The tympanic membrane as a part of the middle ear transformer. Acta Otolaryngol 71:177

    Article  PubMed  CAS  Google Scholar 

  80. Viergever MA, Diependaal RJ (1986) Quantitative validation of cochlear models using the Liouville-Green approximation. Hear Res 21:1–15

    Article  PubMed  CAS  Google Scholar 

  81. Von Békésy G (1932) Über den Einfluß der durch den Kopf und den Gehörgang bewirkten Schallfeldverzerrungen auf die Hörschwelle. Ann Physik 14:51

    Article  Google Scholar 

  82. Von Békésy G (1932) Zur Theorie des Hörens bei der Schallaufnahme durch Knochenleitung. Ann Physik 13:111–136

    Article  Google Scholar 

  83. Von Békésy G (1941) Über die Messung der Schwingungsamplitude der Gehörknöchelchen mittels einer kapazitiven Sonde. Akust Z 6:1

    Google Scholar 

  84. Von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  85. Wever EG, Bray CW (1930) Action currents in the auditory nerve in response to acoustical stimulation. Proc Natl Acad Sci U S A 16:344–350

    Article  PubMed  CAS  Google Scholar 

  86. Wever EG, Lawrence M (1954) Physiological acoustics. Princeton University Press, Princeton

    Google Scholar 

  87. Wever EG, Vernon JA (1955) The effects of the tympanic muscle reflexes upon sound transmission. Acta Otolaryngol 45:433–439

    Article  PubMed  CAS  Google Scholar 

  88. Wiener FM, Ross DA (1946) The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 18:401–408

    Article  Google Scholar 

  89. Zakrisson JE, Borg E (1974) Stapedius reflex and auditory fatigue. Audiology 13:231–235

    Article  PubMed  CAS  Google Scholar 

  90. Zenner HP (1986) Motile responses in outer hair cells. Hear Res 22:83–90

    Article  PubMed  CAS  Google Scholar 

  91. Zenner HP (1986) Aktive Bewegungen von Haarzellen: Ein neuer Mechanismus beim Hörvorgang. HNO 34:133–138

    PubMed  CAS  Google Scholar 

  92. Zenner HP (1990) Die Schallverarbeitung im Innenohr. Neue Erkenntisse zur Zellbiologie der Haarzelle. Steiner, Stuttgart

    Google Scholar 

  93. Zenner HP, Gitter AH (1987) Die Schallverarbeitung des Ohres. Physik Uns Zeit 18:97–105

    Article  Google Scholar 

  94. Zenner HP, Gitter A, Zimmermann U, Schmitt U, Frömter E (1985) Die isolierte, lebende Haarzelle — Ein neues Modell zur Untersuchung der Hörfunktion. Laryngol. Rhinol Otol 64:642–648

    Article  CAS  Google Scholar 

  95. Zenner HP, Zimmermann U, Schmitt U (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hear Res 18:127–133

    Article  PubMed  CAS  Google Scholar 

  96. Zenner HP, Zimmermann U, Gitter AH (1987) Fast motility of isolated mammalian auditory sensory cells. Biochem Biophys Res Commun 149:304–308

    Article  PubMed  CAS  Google Scholar 

  97. Zwicker E (1986) Spontaneous oto-acoustic emissions threshold in quiet and just noticeable amplitude and modulations at low levels. In: Moore B, Patterson RD (eds) Auditory frequency selectivity. Plenum, New York

    Google Scholar 

  98. Zwicker E (1986) A hardware cochlear nonlinear preprocessing model with active feedback. J Acoust Soc Am 80:146–153

    Article  PubMed  CAS  Google Scholar 

  99. Zwicker E (1988) Psychophysics and physiology of peripheral processing in hearing. In: Duifhuis, E, Horst JW, Wit HP (eds) Basic issues in hearing. Proceedings of the 8th international symposium on hearing. Academic, New York, pp 15–25

    Google Scholar 

  100. Zwislocki JJ (1979) Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea. Acta Otolaryngol 87:267–269

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zenner, HP. (1996). Hearing. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics