Skip to main content

Physiological Synergetics: A Holistic Concept Concerning Phase Jumps in the Behavior of Driven Nonlinear Systems

  • Chapter
Comprehensive Human Physiology

Abstract

This chapter is devoted to a discussion of new interdisciplinary approaches developed to deal with phenomena that can be observed in large assemblies of elements and are studied in a set of new interdisciplinary research areas investigating nonlinear, nonequilibrium dynamics. These disciplines are known as chaos research, catastrophe theory, or synergetics and pursue holistic concepts about the behavior of large collectives of a priori unbound elements. We will start by giving a historical perspective, as the roots of current thought in this field can be traced back nearly a century. We shall then mention the change in epistemological standpoints that has been brought about. The major part of the chapter will then be concerned with a detailed discussion of the concepts and techniques now used to address interactions and evolutions of complex systems as they abound in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlan H, Fogelman-Soulie F, Salomon J, Weobuch G (1961) Random Boolian Networks Cybernet Systems 12:103–121

    Article  Google Scholar 

  2. Bacon F (1607) Novum Organon Book I. In: Burt EA (ed) The works of Francis Bacon. McMillan, Philadelphia

    Google Scholar 

  3. Balian R (1992) From microphysics to macrophysics, vol II. Springer, Berlin Heidelberg New York, pp 241–317

    Google Scholar 

  4. Basar E, Basar-Eroglu C, Röschke J, Schutt A (1989) The EEG is a quasi-determinitic signal anticipating sensory-cognitive tasks. In: Basar E, Bullock TH (eds) Brain dynamics. Springer, Berlin Heidelberg New York, pp 43–71

    Chapter  Google Scholar 

  5. Bassingthwaighte JB, Liebovitch LS, West BJ (1994) Fractal physiology. Oxford University Press, Oxford

    Book  Google Scholar 

  6. Krinsky VI (1984) Autowaves: results, problems, outlooks. In: Krinsky VI (ed) Self-Organization, autowaves and structures far from equilibrium. Proceedings of an international symposium, Pushchino, 1983. Springer, Berlin Heidelberg New York (Springer series in synergetics, vol 28, pp9–21)

    Chapter  Google Scholar 

  7. Binder K, Young AP (1986) Spin glasses: experimental facts, theoretical concepts and open questions Rev Mod Phys 58:809–976

    Article  Google Scholar 

  8. Busath DD (1993) The use of physical mehtod in determining gramidicin channel structure and function. Annu Rev Physiol 55:473–511

    Article  PubMed  CAS  Google Scholar 

  9. Cerf R (1969) Attractor ruled dynamics in neurobiology: does it exist, can it be measured. In: Haken H, Mikhailov A (eds) Foundations of Synergetics. Springer, Berlin Heidelberg New York (Springer Series in Synergetics, vol 51)

    Google Scholar 

  10. Clynes M (1969) Cybernetic implications of rein control in perceptual and conceptual organization. Ann N Y Acad Sci 156:629–670

    Article  PubMed  CAS  Google Scholar 

  11. Coultrip R, Granger R, Lynch G A (1992) A cortical model of winner-take-all competition via lateral inhibition. Neural Networks 5:47–54

    Article  Google Scholar 

  12. Davis P (1989) The new physics. Cambridge University Press, Cambridge

    Google Scholar 

  13. De Donder T, Rysselberghe AE (1936) The thermodynamic theory of affinity. Stanford University Press, Stanford

    Google Scholar 

  14. Degn H, Holden AV, Olsen LF (1987) Chaos in biological systems. Plenum, New York

    Book  Google Scholar 

  15. Eisenman G, Horn R (1983) Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol 76:197–225

    Article  PubMed  CAS  Google Scholar 

  16. Feynman RP (1964) Electricity in the atmosphere. In: Feynman RP, Leighton RB, Sand M (eds) The Feynman Lectures on physics. Addison-Wesley Menlo Park, pp 9–10

    Google Scholar 

  17. Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  PubMed  CAS  Google Scholar 

  18. Ford J (1989) What is chaos, that we should be mindful of it? In: Davies P (ed) The new physics. Cambridge University Park Press, pp 348–371

    Google Scholar 

  19. Freeman WJ (1975) Mass action of the nervous system. Academic, New York

    Google Scholar 

  20. Freeman WJ (1990) Searching for signal and noise in the chaos of brain waves. In: Krasner S (ed) The ubiquity of chaos. American Association for the Advancement of Science, Woshington, pp 47–55

    Google Scholar 

  21. Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. Wiley-Interscience, London

    Google Scholar 

  22. Glass L, Mackey MC (1988) From clocks to chaos. The rhythms of life. Princeton University Press, Princeton

    Google Scholar 

  23. Gleick J (1987) Chaos: making a new science. Viking Penguin New York

    Google Scholar 

  24. Goldberger A, Rigney DR (1990) Sudden death is not Chaos. In: Krasner S (ed) The ubiquity of chaos. American Association for the Advancement of Science, Washington; pp 23–34

    Google Scholar 

  25. Haken H (1983) Synergetics. An introduction, 3rd edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  26. Haken H (1983) Advanced synergetics. Instability hierarchies of self-organizing systems and dervices. Springer, Berlin Heidelberg New York (Springer series in synergetics, vol 20)

    Google Scholar 

  27. Haken H, Koepchen HP (1991) Synergetics of biological rhythms. Springer, Berlin Heidelberg New York

    Google Scholar 

  28. Haken H (1988) Information and self-organization. Springer, Berlin Heidelberg New York

    Google Scholar 

  29. Hess WR (1981) Function and neural regulation of internal organs. Biological order and brain organization. In: Akert K (ed) Selected works of W.L. Hess. Springer, Berlin Heidelberg New York

    Google Scholar 

  30. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  31. Hodgkin AL, Huxley AF (1952) Quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  32. HĂĽbler A (1992) Modeling and control of complex systems: paradigms and applications in modeling complex phenomena. In: Lam L (ed) Modeling complex phenomena. Springer, Berlin Heidelberg New York

    Google Scholar 

  33. Kai S, Miike H (1994) Hydrochemical soliton due to thermocapillary in stability in Belousov-Zhabotinsky reaction. Physica A 204:346–358

    Article  CAS  Google Scholar 

  34. Katchalsky A, Curran PF (1967) Non equilibrium thermodynamics in biophysics. Harvard University Press, Cambridge

    Google Scholar 

  35. Kaufmann ST (1992) The origins of order; self organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  36. Kelso JAS (1990) Phase transitions: foundations of behavior. In: Haken H, Stadler M (eds) Synergetics of cognition. Springer, Berlin, Heidelberg New York, pp 249–268

    Chapter  Google Scholar 

  37. Kelso JAS (1991) Behavioral and neural pattern generation: the concept of neurobehavioral dynamical systems. In: Koepchen HP, Huopaneiemi H (eds) Cardiorespiratory and motor coordination. Springer, Berlin Heidelberg New York, pp 224–238

    Chapter  Google Scholar 

  38. Knight P (1989) Quantum optics. In: Davies P (ed) The new physics. Cambridge University Press, Cambridge, pp 289–315

    Google Scholar 

  39. Klimontovich YL (1995) Statistical theory of open systems, vol I: A unified approach to kinetic descriptions of processes in active systems. Kluwer Academic Press, Dordrecht Boston London

    Google Scholar 

  40. Koepchen HP (1991) Physiology of rhythms and control systems: an integrative approach. In: Haken H, Koepchen HP (eds) Rhythms in physiological systems. Springer, Berlin Heidelberg New York, pp 3–20

    Chapter  Google Scholar 

  41. Kruse P, Stadler M, Strüber D (1991) Psychological modification and synergetic modelling of perceptual oscillation. In: Haken H, Koepchen HP (eds) Rhythms in physiological systems. Springer, Berlin Heidelberg New York, pp 299–338

    Chapter  Google Scholar 

  42. Lorenz EN (1963) Deterministic non-periodic flow. J Atmosph Sci 20:282–293

    Google Scholar 

  43. Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289

    Article  PubMed  CAS  Google Scholar 

  44. Mandelbrot BB (1977) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  45. Moiseev SS, Sagdeev RZ, Tur AV, Yanovsky VV (1979) Gyrostructures. In: Nonlinear Waves. Nauka, Moscow, pp 105–115, cited in Sagdeev RZ, Moiseev SS, Tur AV, Khomenho GA, Yanowski VV (1984) Theory of development of large-scale structures in hydromechanical turbulence. In: Krinsky VI (ed) Self-organisation. Autowaves and structures for from equilibrium. Springer, Berlin, Heidelberg New York (Springer Series in Synergetics, vol 28), pp 74–76

    Google Scholar 

  46. Mpitsos GJ (1990) Chaos in brain function and the problem of non-stationarity: a commentary. In: Basar E (ed) Chaos in brain function. Springer, Berlin Heidelberg New York, pp 162–176

    Chapter  Google Scholar 

  47. Noble D, Boyd CAR (1993) The challenge of integrated physiology. In: Boyd CAR, Noble D (eds) The logic of life. Oxford University Press, Oxford, pp 1–13

    Google Scholar 

  48. Onsager L (1931) Reciprocal relations in irreversible processes I and II. Phys Rev 37:405–455, 38:2265–2284

    Article  CAS  Google Scholar 

  49. Popper K (1974) Conjectures and refutation. The growth of scientific knowledge. 4th edn. Routledge and Kegan, London, pp 33–65

    Google Scholar 

  50. Prigogine I (1967) Introduction to thermodynamics of irreversible processes. Wiley-Interscience, New York

    Google Scholar 

  51. Prigogine I (1978) From being to becoming. Time and complexity in physical sciences. Freeman, San Francisco

    Google Scholar 

  52. Prigogine I, Stengers I (1993) Paradox der zeit. Piper, Munich

    Google Scholar 

  53. Rapp PE (1986) Oscillations and chaos in cellular metabolism and physiological systems. In: von Holden A (ed) Chaos. Manchester University Press, Manchester, pp 179–208

    Google Scholar 

  54. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  55. Sherrington CH (1906) The integrative activity of the nervous system. Yale University Press, New Haven

    Google Scholar 

  56. Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374

    Article  PubMed  CAS  Google Scholar 

  57. Swinney HL, Roux JC (1984) Chemical chaos. In: Vidal C, Pacault A (eds) Non-equilibrium dynamics in chemical systems. Springer, Berlin Heidelberg New York, pp 124–140

    Chapter  Google Scholar 

  58. Schmid-Schönbein H, Ziege S (1991) The high pressure system of the mammalian circulation as a dynamic self-organization system. In: Haken H, Koepchen P (eds) Rhythms in physiological systems. Springer, Berlin Heidelberg New York, pp 77–96

    Chapter  Google Scholar 

  59. Schmid-Schönbein H (1990) Synergetic order and chaotic malfunctions of the circulatory systems in “multiorgan failure”: breakdown of cooperativity of hemodynamic functions as cause of acute microvascular pathologies: In: Vincent JL (ed) Update in intensive care and emergency medicine, vol 10. Springer, Berlin Heidelberg New York, pp 3–21

    Google Scholar 

  60. Schmid-Schönbein H (1990) Synergetics of fluid-dynamic and biochemical catastrophe reactions in coronary artery thrombosis. In: Bleifeld W (ed) Unstable angina. Springer, Berlin, Heidelberg New York, pp 16–51

    Chapter  Google Scholar 

  61. Schmid-Schönbein H (1995) Arterial thrombosis as a consequence of “quasi-chaotic” coordination of mechanical and chemical events. In: Hennerici C (ed) Cerebrovascular disease, vol 5. Karger, Basel, pp 102–108

    Google Scholar 

  62. Schmid-Schönbein H, Perktold K (1995) Physical factors in the pathogenesis of atheroma formation. In: Caplan LR (ed) Scientific medicine and the nervous system series. Springer, Berlin Heidelberg New York, pp 185–213

    Google Scholar 

  63. Schmid-Schönbein H (1996) Physiological synergetics -Synergetic physiology. Springer Series in Synergetics (in preparation)

    Google Scholar 

  64. Schmidt G, Morfill GE (1994) Complexity diagnostics in cardiology I: fundamental considerations; II: methods PACE 17:1174–1177, 2336–2341

    Article  PubMed  CAS  Google Scholar 

  65. Schnakenberg J (1981) Thermodynamic network analysis of biological systems. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  66. Stadler M, Kruse P (1990) The selforganiation perspective in cognition research: historical remarks and new experimental approaches. In: Haken H, Stadler M (eds) Synergetics of cognition. Springer, Berlin Heidelberg New York, pp 32–52

    Chapter  Google Scholar 

  67. Thorn R (1975) Structural stability and morphogenesis. Fowler, Reading

    Google Scholar 

  68. Thurvey MT (1977) Preliminaries of a theory of action with reference to vision. In: Shaw R, Bransford J (eds) Perceiving, acting, knowing. Erlbaum, Hillsdale

    Google Scholar 

  69. Virchow R (1856) Gesammelte Abhandlungen Zur wissenschaftlichen Medizin. Meidinger, Frankfurt

    Google Scholar 

  70. Von Bertalanffy L (1953) Biophysik des FlieĂźgleichgewichts. EinfĂĽhrung in die Physik offener Systeme. Vieweg, Braunschweig

    Google Scholar 

  71. Von Holst E (1939) Relative coodination as a phenomenon and as a method of analysis of central nervous function. Reprinted in: Kelso JAS (ed) (1973) The collected papers of Erich von Hoist. University of Miami Press, Coral Gables

    Google Scholar 

  72. Von Holst E (1969) Zur Verhaltensphysiologie bei Tieren und Menschen. Gesammelte Abhandlunger, vol 1. Piper, Munich

    Google Scholar 

  73. Wargitsch C, Hiibler A (1995) Resonances of non-linear oscillators. Phys Rev E (in press)

    Google Scholar 

  74. Webber CL (1991) Discussion on the theoretical and neuronal basis of rhythm coordination. In: Koepchen HP, Huopaneiemi H (eds) Cardiorespiratory and motor coordination. Springer, Berlin, Heidelberg New York Barcelona Budapest, pp 224–238

    Google Scholar 

  75. West BJ (1990) Fractal physiology and chaos in medicine. World Scientific, Singapore, p 278

    Google Scholar 

  76. Yates FE (1982) Outline of a physical theory of physiological systems. Can J Physiol Pharmacol 60:217–248

    Article  PubMed  CAS  Google Scholar 

  77. Yates FE (1993) Self-organizing systems. In: Boyd CAR, Noble D (eds) The logic of life. Oxford University Press, Oxford, pp 189–218

    Google Scholar 

  78. Zaikin AN, Zhabotinsky AM (1970) Concentration wave propagation in two-dimensional liquid phase self-oscillating systems. Nature 225:535

    Article  PubMed  CAS  Google Scholar 

  79. Zeeman EC (1976) Structural stability, the theory of catastrophe and application in the sciences. Springer, Berlin Heidelberg New York (Lecture notes in mathematics, vol 525)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmid-Schönbein, H. (1996). Physiological Synergetics: A Holistic Concept Concerning Phase Jumps in the Behavior of Driven Nonlinear Systems. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics