Frameshifting in Prokaryotes and Eukaryotes

  • H. Engelberg-Kulka
  • A. J. Kingsman
  • S. M Kingsman
Conference paper
Part of the NATO ASI Series book series (volume 97)


Frameshifting has been observed in several systems to date. It is used to increase the genetic content of a stretch of DNA/RNA or to produce different proteins that have related regions towards their amino termini. The efficiency of these events also determines the dosage of the alternative gene products. In this article we will describe frameshifting systems from both prokaryotes and eukaryotes. The prokaryotic systems that will be described will emphasise those frameshifting events that are involved in cellular gene expression whereas the eukaryotic examples will be from retroviruses and retrotransposons where the molecular determinants of shifting have been studied in most detail (see Jacks,1989, for a full review).


Ribosomal Frameshifting Code Nucleotide Sequence Frameshifting Event Shift Site Peptide Chain Release Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins JF, Weiss RB and Gesteland RF (1990) Ribosomal gymnastics - degree of difficulty 9.5, style 10. Cell 62:413–423.PubMedCrossRefGoogle Scholar
  2. Belcourt, M.F. and Farabaugh, P.J. (1990) Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62, 339–352.PubMedCrossRefGoogle Scholar
  3. Benhar I, Miller C and Engelberg-Kulka H (1990) Frameshift-ing in the expression of the trpR gene of Escherichia coli. In: Post-transcriptional Control of Gene Expression. McCarthy JEG and Tuite MF (ed.s) Springer-Verlag Berlin PP591–602. Google Scholar
  4. Benhar I and Engelberg-Kulka H (1991) A procedure for amino acid sequencing in internal regions of proteins. Gene 103:79–82.PubMedCrossRefGoogle Scholar
  5. Benhar I, Miller C and Engelberg-Kulka H (1992) Frameshif t-ing in the expression of the Escherichia coli trpR gene. Mol Microbiol 6:2777–2784.PubMedCrossRefGoogle Scholar
  6. Benhar I and Engelberg-Kulka H (1992) Frameshifting in the expression of the Escherichia coli trpR gene occurs by the bypassing of a segment of its coding sequence. Cell (in press).Google Scholar
  7. Blinkowa A and Walker JR (1990) Programmed ribosomal frame-shifting generates the E. coli RNA polymerase III subunit from within the τ subunit reading frame. Nuc Acid Res 18:1725–1729.CrossRefGoogle Scholar
  8. Craigen WJ, Cook RG, Tate WP and Caskey T (1985) Bacterial peptide chain release factors: Conserved primary structure and possible frameshift regulation of release factor 2. PNAS 82:3616–3620.PubMedCrossRefGoogle Scholar
  9. Craigen WJ and Caskey CT (1986) Expresison of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322:273–275.PubMedCrossRefGoogle Scholar
  10. Craigen WJ and Caskey CT (1987) The function, structure and regulation of E. coli peptide chain release factor. Biochimie 69:1031–1041.PubMedCrossRefGoogle Scholar
  11. Flower AM and McHenry CS (1990) the γ subunit of DNA polymerase III holoenzyme of E. coli is produced by ribosomal frameshifting. PNAS 87:3713–3717.PubMedCrossRefGoogle Scholar
  12. Huang WM, Ao SZ, Casjens S, Orlandi R, Zeikus R, Weiss R, Winge D and Fang M (1988) A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239:1005–1013.PubMedCrossRefGoogle Scholar
  13. Jacks, T. (1989) Translational suppression in gene expression. Curr. Topics in Microbiol. Immunol. 157, 93–124.Google Scholar
  14. Jacks, T. and Varmus, H. (1985) Expression of the Rous sarcoma virus pol gene by ribosomal f ramehifting. Science 23 0, 1237–1242.CrossRefGoogle Scholar
  15. Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J. and Varmus, H. (1988a) Characterisation of ribosomal frameshifting HIV gag-pol expression. Nature 331, 280–283.PubMedCrossRefGoogle Scholar
  16. Jacks, T., Madhani, H.D., Masiarz, F.R., Varmus, H. (1988b) Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55, 447–458.PubMedCrossRefGoogle Scholar
  17. Kang C and Cantor CR (1985) Structure of ribosome-bound messengerRNA as revealed by enzymatic accessibility. J Mol Biol 181:241–251.PubMedCrossRefGoogle Scholar
  18. Kingsman, A.J. and Kingsman, S.M. (1988) Ty, a retroelement moving forward. Cell 53, 333–335.PubMedCrossRefGoogle Scholar
  19. Mellor, J., Fulton, S., Dobson, M.J., Wilson, W., Kingsman, S.M. and Kingsman, A.J. (1985) A retrovirus-like strategy for expression of a fusion protein encoded by the yeast transposon Tyl. Nature 313, 243–246.PubMedCrossRefGoogle Scholar
  20. Parker J (1989) Errors and alterations in reading the uni¬versal genetic code. Microbiol Rev 53:273–298.PubMedGoogle Scholar
  21. Parkin, N.T., Chammorro, M. and Varmus, H.E. (1992) Human immunodefieciency viris type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. J. Virol. 66, 5147–5151.Google Scholar
  22. Randerath, E., Gupta, R.C, Chia, L.L.S.Y., Chang, S.H. andRanderath, K. (1979) Yeast tRNA. Purification, properties and determination of nucleotide sequence by radioactive derivative methods. Eur. J. Biochem. 93, 79–94.PubMedCrossRefGoogle Scholar
  23. Ratner, L., Haseltine, W., Patarca, R., Livak, K.J., Starcich, B., Josephs, S.F., Doran, E.R., Rafalski, J.A., Ghrayeb, J., Chang, N.T., Gallo, R.C. and Wong-Staal, F. (1985) Complete nucleotide sequence of the AIDS virus HTLV-III. Nature 313, 277–284.PubMedCrossRefGoogle Scholar
  24. Somerville R (1992) The Trp repressor. A ligand-activated regulatory protein. Progress in nucleic acid research and molecular biology 42:274.Google Scholar
  25. TsTsuchihashi A and Kornberg A (1990) Translational frame-shifting generates the γ subunit of DNA polymerase II holoenzyme. PNAS 87:2516–2520.CrossRefGoogle Scholar
  26. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF and Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3 • end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli EMBO J.7:1503–1507.Google Scholar
  27. Weiss RB, Huang WM and Dunn DM (1990) A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62:117–126.PubMedCrossRefGoogle Scholar
  28. Wilson, W., Braddock, M., Adams, S.E., Rathjen, P.D., Kingsman, S.M. and Kingsman, A.J. (1988) HIV expression strategies: ribosomal frameshifting is directed by a shortsequence in both mammalian and yeast systems. Cell 55, 1159–1169.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • H. Engelberg-Kulka
    • 1
  • A. J. Kingsman
    • 2
  • S. M Kingsman
    • 2
  1. 1.Department of Molecular Biology Hadassah Medical SchoolHebrew UniversityJerusalemIsrael
  2. 2.Department of BiochemistryOxfordUK

Personalised recommendations