Behavioral Consequences of 5-HT1B Receptor Gene Deletion

  • N. Castanon
  • S. Ramboz
  • F. Saudou
  • R. Hen
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 129)


Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic amine which is involved in a wide range of physiological functions including sleep, appetite, pain perception, sexual activity, memory and mood control (for a review see Wilkinson et al. 1991). A central serotonin deficit has been associated with behaviors such as suicidality, impulsive violence (Higley et al. 1992), depression and alcoholism (Eichelmann et al. 1992), and serotoninergic drugs are used in the treatment of a number of pathological states including migraine, depression and anxiety (Sleight et al. 1991). The multiple actions of serotonin are mediated by the interaction of this amine with at least 14 receptors (for a review see Saudou and Hen 1994), most of which belong to the G-proteincoupled receptor family.


Mutant Mouse Violent Offender EX400 Probe Serotoninergic Neuron Aggression Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boschert U, Ait Amara D, Segu L, Hen R (1992) The mouse 5-HT1B receptor is localized predominantly on axon terminals. Neuroscience 58:167–182CrossRefGoogle Scholar
  2. Boulenguer P, Chauveau J, Segu L, Morel A, Lanoir J, Delaage M (1991) A new 5-hydroxy-indole derivative with preferential affinity for 5HT1B binding sites. Eur J Pharmacol 194:91–98CrossRefGoogle Scholar
  3. Bourgault PC, Karczmar AG, Scudder CL (1963) Contrasting behavioral, pharmacological, neurophysiological, and biochemical profiles of C57 B1/6 and SC-I strains of mice. Life Sci 8:533–537PubMedCrossRefGoogle Scholar
  4. Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1:131–139PubMedCrossRefGoogle Scholar
  5. Bruinvels AT, Palacios JM, Hoyer D (1993) Pharmacological characterization and distribution of serotonin 5-HT1D-like and 5H1D binding sites in rat brain. Naunyn Schmiedebergs Arch Pharmacol 347:569–582PubMedCrossRefGoogle Scholar
  6. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292PubMedCrossRefGoogle Scholar
  7. Coccaro EF (1989) Central serotonin and impulsive aggression. Br J Psychiatry 155(Suppl):52–62Google Scholar
  8. Crawley JN, Goodwin FK (1980) Preliminary report of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav 13:167–170PubMedCrossRefGoogle Scholar
  9. Eichelmann B (1992) Aggressive behavior: from laboratory to clinic quo vadit? Arch Gen Psychiatry 49:488–492CrossRefGoogle Scholar
  10. Fanselow MS (1991) The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional, anatomical, and neurochemical organization. Plenum, New York, pp 151–173CrossRefGoogle Scholar
  11. Fernandez-Guasti A, Escalante AL, Ahlenius S, Hillegaart V, Larsson K (1992) Stimulation of 5-HT1A and 5-HT1B receptors in brain regions and its effects on male rat sexual behaviour. Eur J Pharmacol 210:121–129PubMedCrossRefGoogle Scholar
  12. Flannelly KJ, Muraoka MY, Blanchard DC, Blanchard RJ (1985) Specific antiaggressive effects of fluprazine hydrocloride. Psychopharmacology 87:86–89PubMedCrossRefGoogle Scholar
  13. Green AR, Guy AP, Gardner CR (1984) The behavioural effects of RU 24969, a suggested 5-HT1 receptor agonist in rodents and the effect on the behavior of treatment with antidepressants. Neuropharmacology 23:655–661PubMedCrossRefGoogle Scholar
  14. Griebel G, Saffroy-Spittler M, Misslin R, Vogel E, Martin JR (1990) Serenics fluprazine (DU 27716) and eltoprazine (DU 28853) enhance neophobic and emotional behaviour in mice. Psychopharmacology 102:498–502PubMedCrossRefGoogle Scholar
  15. Higley JD, Mehlman PT, Taub DM, Higley SB, Suomi SJ, Vickers JH, Linnoila M (1992) Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Arch Gen Psychiatry 49:436–441PubMedCrossRefGoogle Scholar
  16. Kennett GA, Dourish CT, Curzon G (1987) 5-HT1B agonists induce anorexia at a postsynaptic site. Eur J Pharmacol 141:429–435PubMedCrossRefGoogle Scholar
  17. Koe BK, Nielsen JA, Macor JE, Heym J (1992) Biochemical and behavioral analyses of the 5-HT1B receptor agonist, CP-94. Drug Dev Res 26:241–250CrossRefGoogle Scholar
  18. Lagerspetz KM J, Lagerspetz KYH (1971) Changes in the aggressiveness of mice resulting from selective breeding, learning, and social isolation. Scand J Psychol 12:241–248PubMedCrossRefGoogle Scholar
  19. Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 Homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66:1105–1119PubMedCrossRefGoogle Scholar
  20. Maas JW (1962) Neurochemical differences between two strains of mice. Science 137:621–625PubMedCrossRefGoogle Scholar
  21. Mann JJ, Arango V, Marzuk PM, Theccanat S, Reis DJ (1989) Evidence of the 5-HT hypothesis of suicide. A review of post-mortem studies. Br J Psychiatry 155(Suppl):7–14CrossRefGoogle Scholar
  22. Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R (1992) Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci USA 89:3020–3024PubMedCrossRefGoogle Scholar
  23. Misslin R, Belzung C, Vogel E (1989) Behavioural validation of a light/dark choice procedure for testing anti-anxiety agents. Behav Proc 18:119–132Google Scholar
  24. Molina V, Ciesielski L, Gobaille S, Isel F, Mandel P (1987) Inhibition of mouse killing behavior by serotonin-mimetic drugs: effect of partial alterations of serotonin neurotransmisssion. Pharmacol Biochem Behav 27:123–131PubMedCrossRefGoogle Scholar
  25. Mos J, Olivier B, Tulp MThM (1992) Ethopharmacological studies differentiated the effects of various serotoninergic compounds on aggression in rats. Drug Develop Res 26:343–360CrossRefGoogle Scholar
  26. Oberlander C, Blaquière B, Pujol JF (1986) Distinct function for dopamine and serotonin in locomotor behavior: evidence using the 5-HT1 agonist RU 24969 in globus pallidus-lesioned rats. Neurosci Lett 67:113–118PubMedCrossRefGoogle Scholar
  27. Oberlander C, Demassey Y, Verdu A, van de Velde D, Bardeley C (1987) Tolerance to the serotonin 5-HT1 agonist RU24969 and effects on dopaminergic behavior. Eur J Pharmacol 139:205–214PubMedCrossRefGoogle Scholar
  28. Offord SJ, Odway GA, Frazer A (1988) Application of [125I] iodocyanopindolol to measure 5-hydroxytryptamine 1B receptors in the brain of rat. J Pharmacol Exp Ther 244:144–153PubMedGoogle Scholar
  29. Olivier B (1980) A new antiaggressive compound. Ethological studies. Aggress Behav 6:262–263Google Scholar
  30. Olivier B, VanDalen D, Hartog J (1986) A new class of psychoactive drugs, serenics. Drugs of the Future 11:473–499Google Scholar
  31. Olivier B, Mos J, van der Heyden J, Schipper J, Tulp M, Berkelmans B, Bevan P (1987) Serotonin modulation of agonistic behaviour. In: Olivier B, Mos J, Brain PF (eds) Ethopharmacology of agonistic behaviour in animals and humans. Nijhoff, Dordrecht, pp 162–186CrossRefGoogle Scholar
  32. Olivier B, Mos J, van der Heyden J, Hartog J (1989) Serotonergic modulation of social interactions in isolated male mice. Psychopharmacology 97:154–156PubMedCrossRefGoogle Scholar
  33. Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. 1. Serotonin-1 receptors. Brain Res 346:205–230PubMedCrossRefGoogle Scholar
  34. Pellow S, Johnston AL, File SE (1987) Selective agonists and antagonists for 5-hydroxytryptamine receptor subtypes, and interactions with yohimbine and FG 7142 using the elevated plus-maze in the rat. J Pharm Pharmacol 39:917–922PubMedCrossRefGoogle Scholar
  35. Saudou F, Hen R (1994) 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. Neurochem Int 25:503–532PubMedCrossRefGoogle Scholar
  36. Saudou F, Ait Amara D, Dierich A, Lemeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878PubMedCrossRefGoogle Scholar
  37. Segu L, Rage P, Boulenguer P (1990) A new system for computer assisted quantitative receptor autoradiography. J Neurosci Methods 31:197–205PubMedCrossRefGoogle Scholar
  38. Segu L, Chauveau J, Boulenguer P, Morel A, Lanoir J, Delaage M (1991) Synthesis and pharmacological study of radioiondinated serotonin derivative specific of 5-HT1B and 5-HT1D binding sites of central nervous system. C R Acad Sci III 312:655–661PubMedGoogle Scholar
  39. Sijbesma H, Schipper J, De Kloet ER, Mos J, van Aken H, Olivier B (1991) Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 38:447–458PubMedCrossRefGoogle Scholar
  40. Sleight AJ, Pierce PA, Schmidt AW, Hekmatpanah CR, Peroutka SJ (1991) The clinical utility of serotonin receptor active agents in neuropsychiatric Disease. In: Peroutka S (ed) Serotonin receptor subtypes: basic and clinical aspects. Wiley, New York, pp 211–227Google Scholar
  41. Vergnes M, Depaulis A, Boehrer A (1986) Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol Behav 36:653–658PubMedCrossRefGoogle Scholar
  42. Virkkunen M, Nuutila A, Goodwin FK, Linnoila M (1987) Cerebrospinal fluid monoamine metabolite levels in male arsonists. Arch Gen Psychiatry 44:241–247PubMedCrossRefGoogle Scholar
  43. Virkkunen M, Rawlings R, Tokola R, Poland RE, Guidotti A, Nemeroff C, Bissette G, Kalogeras K, Karonen SL, Linnoila M (1994) CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Arch Gen Psychiatry 51:20–27PubMedCrossRefGoogle Scholar
  44. Wilkinson LO, Dourish CT (1991) Serotonin and animal behavior. In: Peroutka S (ed) Serotonin receptor subtypes; basic and clinical aspects. Wiley, New York, pp 147–210Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • N. Castanon
    • 1
  • S. Ramboz
    • 1
  • F. Saudou
    • 1
  • R. Hen
    • 1
  1. 1.Institut de Génétique et de Biologie Moléculaire et Cellulaire du CNRS-LGMEU184 de I’INSERM, Parc d’InnovationIllkirch CedexFrance

Personalised recommendations