Skip to main content

Intracerebral Release of Vasopressin and Oxytocin: New Aspects of the Old Concept of Neurosecretion

  • Conference paper
Neuroendocrinology

Abstract

The hypothalamic-neurohypophysial system belongs to the best investigated neurosecretory systems in the mammalian brain. The nonapeptides vasopressin and oxytocin are synthesized in the neurons of this system and are secreted either as hormones into the systemic circulation or as neuromodulators/neurotransmitters into the extracellular fluid of distinct brain areas. Recent findings of different lines of investigation provided new aspects in terms of stimuli, dynamics, mechanisms and consequences of the activation of the hypothalamic-neurohypophysial system and, consequently, the release of vasopressin and oxytocin into the different compartments. For instance, it is now evident that both nonapeptides are released not only from axon terminals but from virtually every part of the neuron’s surface. Depending upon the quality and intensity of a given stimulus, the release patterns from dendrites, perikarya, axons en passant, and axon terminals can be dissociated from each other and, thus, seem to be differentially controlled. These regulatory patterns of the hypothalamic-neurohypophysial system are likely to coordinate appropriate endocrine and behavioral responses of the organism to challenging situations. It is tempting to speculate whether the new aspects of neuroendocrine regulation discussed here can also be extended to other neurosecretory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acher R, Chauvet J (1953) La structure de la vasopressine de boef. Biochim Biophys Acta 12: 487–488

    Article  PubMed  CAS  Google Scholar 

  • Antoni FA (1993) Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 14: 76–122

    Article  PubMed  CAS  Google Scholar 

  • Bargmann W, Scharrer E (1951) The site of origin of the hormones of the posterior pituitary. Am Sci 39: 255–259

    Google Scholar 

  • Bergland RM, Page RB (1978) Can the pituitary secrete directly to the brain? (Affirmative anatomical evidence). Endocrinology 102: 1325–1338

    Article  PubMed  CAS  Google Scholar 

  • Boudaba C, Szabo K, Tasker JG (1996) Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J Neurosci 16: 7151–7160

    PubMed  CAS  Google Scholar 

  • Buma P, Nieuwenhuys E (1987) Ultrastructural demonstration of oxytocin and vasopressin release sites in the neural lobe and median eminence of the rat by tannic acid and immunogold methods. Neurosci Lett 74: 151–157

    Article  PubMed  CAS  Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (1991) Reflex control of magnocellular vasopressin and oxytocin secretion. Trends Neurosci 14: 406–411

    Article  PubMed  CAS  Google Scholar 

  • Dayanithi G, Moos F, Richard Ph (1995) Vasopressin controls magnocellular vasopressin neurones via VI-type receptors in the rat. J Physiol 489: 184–185

    Google Scholar 

  • Dayanithi G, Widmer H, Richard P (1996) Vasopressin-induced intracellular Ca2+ increase in isolated rat supraoptic cells. J Physiol 490: 713–727

    PubMed  CAS  Google Scholar 

  • Decavel C, Hatton GI (1995) Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glia cells. J Comp Neurol 354: 13–26

    Article  PubMed  CAS  Google Scholar 

  • di Scala-Guenot D, Strosser MT, Richard P (1987) Electrical stimulations of perifused magnocellular nuclei in vitro elicit Ca2+-dependent, tetrodotoxin-insensitive release of oxytocin and vasopressin. Neurosci Lett 76: 209–214

    Article  PubMed  Google Scholar 

  • du Vigneaud V, Ressler C, Trippett S (1953) The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J Biol Chem 205: 949–957

    CAS  Google Scholar 

  • Dunn FL, Brennan TJ, Nelson AE, Robertson GL (1973) The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52: 3212–3219

    Article  PubMed  CAS  Google Scholar 

  • Engelmann M, Ludwig M, Landgraf R (1994) Simultaneous monitoring of intracerebral release and behavior: endogenous vasopressin improves social recognition. J Neuroendocrinol 6: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Engelmann M, Wotjak CT, Ludwig M, Neumann I, Landgraf R (1996) Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory. Neurosci Biobehav Rev 20: 341–358

    Article  PubMed  CAS  Google Scholar 

  • Hatton GI (1990) Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol 34: 437–504

    Article  PubMed  CAS  Google Scholar 

  • Hermes MLHJ, Spanswick D, Renaud LP, Buijs RM (1996) Inhibitory action of vasopressin on neurons of the rat hypothalamic paraventricular nucleus. Soc Neurosci Abstr 22: 807.16

    Google Scholar 

  • Holmes MC, Antoni FA, Aguilera G, Catt KJ (1986) Magnocellular axons in passage through the median eminence release vasopressin. Nature 319: 326–329

    Article  PubMed  CAS  Google Scholar 

  • Krisch, B (1980) Immunocytochemistry of neuroendocrine systems: vasopressin, somatostatin, luliberin. Progr Histochem Cytochem 13: 1–160

    CAS  Google Scholar 

  • Lambert RC, Moos FC, Richard Ph (1993) Action of endogenous oxytocin within the paraventricular or supraoptic nuclei: a powerful link in the regulation of the bursting pattern of oxytocin neurons during the milk-ejection reflex in rats. Neuroscience 57: 1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R (1995) Intracerebrally released vasopressin and oxytocin: measurement, mechanisms and behavioural consequences. J Neuroendocrinol 7: 243–253

    Article  PubMed  CAS  Google Scholar 

  • LeMoal M, Koob GF, Koda LY, Bloom FE, Manning M, Sawyer WH, Rivier J (1981) Vasopressor receptor antagonist prevents behavioural effects of vasopressin. Nature 291: 491–493

    Article  CAS  Google Scholar 

  • Leng G (1982) Lateral hypothalamic neurones: osmosensitivity and the influence of activating magnocellular neurosecretory neurones. J Physiol 326: 35–48

    PubMed  CAS  Google Scholar 

  • Leng G, Mason WT (1982) Influence of vasopressin upon firing patterns of supraoptic neurons:a comparison of normal and brattleboro rats. Ann NY Acad Sci 394: 153–158

    Article  CAS  Google Scholar 

  • Ludwig M (1995) Functional role of intrahypothalamic release of oxytocin and vasopressin:consequences and controversies. Am J Physiol 268: E537-E545

    PubMed  CAS  Google Scholar 

  • Ludwig M, Leng G (1997) Autoinhibition of supraoptic nucleus vasopressin neurones in vivo: a combined retrodialysis/electrophysiological study in rats. Eur J Neurosci (in press)

    Google Scholar 

  • Ludwig M, Callahan MF, Morris M (1995) Effects of tetrodotoxin on osmotically stimulated central and peripheral vasopressin and oxytocin release. Neuroendocrinology 62: 619–627

    Article  PubMed  CAS  Google Scholar 

  • Mason WT, Hatton Gl, Ho YW, Chapman C, Robinson ICF (1986) Central release of oxytocin, vasopressin and neurophysin by magnocellular neurone depolarization: evidence in slices of guinea pig and rat hypothalamus. Neuroendocrinology 42: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Moos F, Freund-Mercier MJ, Guerne Y, Guerne JM, Stoeckel ME, Richard Ph (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Morris JF, Pow DV (1993) New anatomical insights into the inputs and outputs from hypothalamic magnocellular neurons. Ann NY Acad Sci 689: 16–33

    Article  CAS  Google Scholar 

  • Neumann I, Ludwig M, Engelmann M, Pittman QJ, Landgraf R (1993) Simultaneous microdialysis in blood and brain: oxytocin and vasopressin release in response to central and peripheral osmotic stimulation and suckling in the rat. Neuroendocrinology 58: 637–645

    Article  PubMed  CAS  Google Scholar 

  • Neumann I, Koehler E, Landgraf R, Summy-Long J (1994) An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinology 134: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Neumann I, Douglas AJ, Pittman QJ, Russell JA, Landgraf R (1996) Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-related events. J Neuroendocrinol 8: 227–233

    Article  PubMed  CAS  Google Scholar 

  • Nordmann JJ, Dayanithi G (1988) Release of neuropeptides does not only occur at nerve terminals. Biosci Rep 8: 471–483

    Article  PubMed  CAS  Google Scholar 

  • Poulain DA, Theodosis DT (1988) Coupling of electrical activity and hormone release in mammalian neurosecretory neurons. Curr Top Neuroendocrinol 9: 73–104

    Google Scholar 

  • Pow DV, Morris JF (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32: 435–439

    Article  PubMed  CAS  Google Scholar 

  • Scharrer, E (1928) Die Lichtempfindlichkeit blinder Elritzen; Untersuchungen über das Zwischenhirn der Fische I. Z vergl Physiol 7: 1–38

    Article  Google Scholar 

  • Scharrer E, Scharrer B (1937) Über Drüsen-Nervenzellen und neurosekretorische Organe bei Wirbellosen und Wirbeltieren. Biol Rev 12: 185–216

    Article  Google Scholar 

  • Van Erp AMM, Kruk MR, Semple DM, Verbeet DWP (1993) Initiation of self-grooming in resting rats by local infusion of oxytocin but not a-MSH. Brain Res 607: 108–112

    Article  PubMed  Google Scholar 

  • Windle RJ, Luckman SM, Stoughton RP, Forsling ML (1996) The effect of pinealectomy on osmotically stimulated vasopressin and oxytocin release and Fos protein production within the hypothalamus of the rat. J Neuroendocrinol 8: 747–753

    Article  PubMed  CAS  Google Scholar 

  • Wotjak CT, Ludwig M, Landgraf R (1994) Vasopressin facilitates its own release within the rat supraoptic nucleus. Neuroreport 5: 1181–1184

    PubMed  CAS  Google Scholar 

  • Wotjak CT, Kubota M, Kohl G, Landgraf R (1996) Release of vasopressin from supraoptic neurons within the rat median eminence in vivo. A combined microdialysis and push-pull perfusion study in the rat. Brain Res 726: 237–241

    Article  PubMed  CAS  Google Scholar 

  • Wotjak CT, Kubota M, Liebsch G, Montkowski A, Holsboer F, Neumann I, Landgraf R (1996b) Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: a novel mechanism of regulating adrenocorticotropic hormone secretion? J Neurosci 16: 7725–7732

    PubMed  CAS  Google Scholar 

  • Wotjak CT, Ganster J, Kohl G, Holsboer F, Landgraf R, Engelmann M (1997) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the regulatory capacities of peptidergic neurons. Neuroscience (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engelmann, M., Landgraf, R. (1997). Intracerebral Release of Vasopressin and Oxytocin: New Aspects of the Old Concept of Neurosecretion. In: Korf, HW., Usadel, KH. (eds) Neuroendocrinology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60915-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60915-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64605-8

  • Online ISBN: 978-3-642-60915-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics