Advertisement

Glucose-6-Phosphate Dehydrogenase Isoenzymes from Cyanophora paradoxa Examination of Their Metabolic Integration Within the Meta-Endocytobiotic System

  • T. Fester
  • H. E. A. Schenk
Conference paper

Summary

A partial characterization of the observed isoenzymes of the glucose-6-phosphate dehydrogenase (G6PDH) in Cyanophora paradoxa is given. The enzyme activities of G6PDH and 6-phosphogluconate-dehydrogenase detected in both cytosolic and cyanoplast cell compartments in comparison with biochemical properties of the isoenzymes of the G6PDH and nutritional characteristics of the flagellate allow speculation about the role of the cytosolic pentose phosphate cycle in C. paradoxa.

Keywords

Cyanophora paradoxa Glaucocystophyta Glucose-6-phosphate dehydrogenase Isoenzymes Metabolic regulation Oxidative pentose phosphate pathway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson LE, Duggan JX (1976) Light modulation of glucose-6-phosphate-dehydrogenase. Partial characterization of the light inactivation system and its effects on the properties of the chloroplastic and cytoplasmic forms of the enzyme. Plant Physiol 58: 135–139PubMedCrossRefGoogle Scholar
  2. Ansorge W (1985) J Biochem Biophys Meth 9: 13–20CrossRefGoogle Scholar
  3. Arillo A, Bavestrello G, Burlando B, Sara M (1993) Metabolic integration between symbiotic cyanobacteria and sponges: A possible mechanism. Marine Biol (Berlin) 117: 159–162CrossRefGoogle Scholar
  4. Bayer M, Schenk HEA (1986) Biosynthesis of proteins in Cyanophora paradoxa: protein import into the endocyanelle analyzed by micro two-dimensional gel electrophoresis. Endocytobiosis and Cell Res 3: 197–202Google Scholar
  5. Bergmann T, Jörnvall H, Wood I, Jeffery J (1991) Eukaryotic glucose-6-phosphate dehydrogenases: structural screening of related proteins. J Prot Chem 10 (1): 25–29CrossRefGoogle Scholar
  6. Deimel R (1985) Diplomarbeit, University of TübingenGoogle Scholar
  7. Fester T (1993) Diplomarbeit, University of TÜbingenGoogle Scholar
  8. Fester T, Völkle E, Schenk HEA (1996) Purification and partial characterization of the cyanoplast glucose-6-phosphate dehydrogenase in Cyanophora paradoxa. Endocytobiosis and Cell Res 11: 159–176Google Scholar
  9. Graeve K, von Schaewen A, Scheibe R (1994) Purification, characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solanum tuberosum L.). Plant J 5: 353–361PubMedCrossRefGoogle Scholar
  10. Herdmann M, Stanier RY (1977) The cyanelle: chloroplast or endosymbiotic prokaryote? FEMS Lett 1: 7–12CrossRefGoogle Scholar
  11. Hilary SJ (1972) Dithiothreitol: an inhibitor of glucose-6-phosphate dehydrogenase activity in leaf extracts and isolated chloroplasts. Planta (Berlin) 106: 273–277CrossRefGoogle Scholar
  12. Huppe HC, Vanlerberghe GC, Turpin DH (1992) Evidence for activation of the oxidative pentose phosphate pathway during photosynthetic assimilation of nitrate but not ammonium by a green alga. Plant Physiol (Bethesda) 100: 2096–2099PubMedCrossRefGoogle Scholar
  13. Huppe HC, Farr TJ, Turpin DH (1994) Coordination of chloroplastic metabolism in N-limited Chlamydomonas reinhardtiiby redox modulation: II. Redox modulation activates the oxidative pentose phosphate pathway during photosynthetic nitrate assimilation. Plant Physiol (Rockville) 105: 1043–1048PubMedGoogle Scholar
  14. Kaiser WM, Bassham JA (1979) Carbon metabolism of chloroplasts in the dark: oxidative pentose phosphate cycle versus glycolytic pathway. Planta 144: 193–200CrossRefGoogle Scholar
  15. Kies L (1988) The effect of penicillin on the morphology and ultrastructure of Cyanophora, Gloeochaete and Glaucocystis (Glaucocystophyceae) and their cyanelles. Endocytobiosis and Cell Res 5: 361–372Google Scholar
  16. Kloos K, Schlichting R, Bothe H (1993) Glutamine and glutamate transport in Cyanophora paradoxa. Bot Acta 106: 435–440Google Scholar
  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685PubMedCrossRefGoogle Scholar
  18. Mu, Hong, Ming-qu Li, Guang-Yao Wu, Xiang-Yu Wu (1992) Disactivation of glucose-6- phosphate-dehydrogenase by light-reduced thioredoxin. Acta Bot Sin 34: 37–42Google Scholar
  19. Pringsheim EG (1958) Organismen mit blaugrünen Assimilatoren. Stud Plant Physiol (Praha) 165–184Google Scholar
  20. Provasoli L, Pintner J (1952) Some interesting algal flagellates recently obtained in pure culture. News Bull Phycol Soc Amer 5: 7Google Scholar
  21. Schenk HEA (1990) Cyanophora paradoxa: a short survey. In: P Nardon et al (eds) Endocytobiology IV. INRA, Paris, pp 199–209Google Scholar
  22. Schenk HEA (1992a) Cyanophora paradoxa, identification and sequencing of nucleus-encoded cyanellar proteins. A proof for gene transfer. Endocytobiosis and Cell Res 8: 197–222Google Scholar
  23. Schenk HEA (1992b) Cyanobacterial symbioses. In: A Ballows, HG Trüper, M Dwor-kin, W Harder, K-H Schleifer (eds) The Prokaryotes. A handbook of ecophysiology, isolation, identification, application. Springer, New York, vol 4, pp 3819–3854Google Scholar
  24. Schenk HEA (1993) Some thoughts towards a discussion of terms and definitions in endocytobiology. In: S Sato, M Ishida, H Ishikawa (eds) Endocytobiology V, Tübingen University Press, Tübingen, pp 547–556Google Scholar
  25. Schenk HEA (1994a) Glaucocystophyta model for symbiogenous evolution of new eukaryotic species. In: J Seckbach (ed) Evolutionary pathways and enigmatic algae, Kluwer, Dordrecht, pp 19–52Google Scholar
  26. Schenk HEA (1994b) Cyanophora paradoxa: Anagenetic model or missing link of plastid evolution? Endocytobiosis and Cell Res 10: 87–106Google Scholar
  27. Schenk HEA, Bayer MG, Maier T (1987) Nitrate assimilation and regulation of biosynthesis and disintegration of phycobiliproteids by Cyanophora paradoxa. Indications for a nitrogen store function of the phycobiliproteids. Endocytobiosis and Cell Res 4: 167–176Google Scholar
  28. Schlichting R, Bothe H (1993) The cyanelles (organelles of a low evolutionary scale) possess a phosphate-translocator and a glucose-carrier in Cyanophora paradoxa. Bot Acta 106: 428–434Google Scholar
  29. Schnarrenberger C, Flechner A, Martin W (1995) Enzymatic evidence for a complete oxidative pentose phosphate pathway in chloroplasts and an incomplete pathway in the cytosol of spinach leaves. Plant Physiol (Rockville) 108: 609–614PubMedGoogle Scholar
  30. Sitte P (1993) Intertaxonic combination: introducing and defining a new term in symbiogenesis. In: S Sato, M Ishida, H Ishikawa (eds) Endocytobiology V, Tübingen University Press, Tübingen, pp 557–558Google Scholar
  31. Völkle E (1989) Diplomarbeit, University of TübingenGoogle Scholar
  32. Zook D, Schenk HEA (1986) Lipids in Cyanophora paradoxa. III. Lipids in cell compartments. Endocytobiosis and Cell Res 3: 203–211Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • T. Fester
    • 1
  • H. E. A. Schenk
    • 1
  1. 1.Botanisches InstitutUniversity of TübingenGermany

Personalised recommendations