Skip to main content

Role of complement and Fc receptors in the pathogenesis of HIV-1 infection

  • Chapter
Immunopathogenesis of HIV Infection

Abstract

The Fc portion of immunoglobulin is important for complement activation and for targeting antigens to complement receptors (CR) and Fc receptors (FcR) on the surface of many cell types. Interactions with complement, CR and FcR can play both beneficial and pathological roles during viral infection. Activation of the classical or alternative complement pathways by epitopes and antibodies on microbial surfaces generates cleavage fragments of early complement component C3 that deposit on microbial surfaces and act as opsonins [104, 125]. Further activation of the terminal complement pathway can lead to assembly of the C5b-9 membrane attack complex (MAC) that forms transmembrane channels and eventually kills many targeted microbes, including certain viruses [48]. Opsonized virus particles that are not destroyed by the MAC may go on to bind CR on a variety of cell types. CR-binding can have consequences such as infection enhancement, virus clearance through the mononuclear phagocytic system, virus trapping in lymphoid tissues and B cell activation. Infection enhancement or phagocytosis also occurs when immune-complexed virus engages FcR on monocytes and macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahearn JM, Fearon DT (1989) Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv Immunol 46: 183

    PubMed  CAS  Google Scholar 

  2. Albert J, Abrahamsson B, Nagy K, Aurelius E, Gaines H, Nystrom G, Fenyo EM (1990) Rapid development of isolate-specific neutralizing antibodies after primary HIV-1-infection and consequent emergence of virus variants which resist neutralization by autologous sera. J Acquir Immune Defic Syndr 4: 107

    CAS  Google Scholar 

  3. Allan JS, Coligan JE, Barin F, McLane MF, Sodroski JG, Rosen CA, Haseltine WA, Lee TH, Essex M (1985) Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228: 1091

    PubMed  CAS  Google Scholar 

  4. Arthur LO, Bess JW, Sowder RC, Benveniste RE, Mann DL, Chermann J-C, Henderson LE (1991) Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science 258: 1935

    Google Scholar 

  5. Ashwell JD (1988) Are B lymphocytes the principal antigen-presenting cells in vivo? J Immunol 140: 3697

    PubMed  CAS  Google Scholar 

  6. Bakker LJ, Nottet HSLM, Vos NM de, Graaf L de, Strijp JAG van, Visser MR, Verhoef J (1992) Antibodies and complement enhance binding and uptake of HIV-1 by human monocytes. J Acquir Immune Defic Syndr 6: 35

    CAS  Google Scholar 

  7. Banapour B, Sernatinger J, Levy JA (1986) The AIDS-associated retrovirus is not sensitive to lysis or inactivation by human serum. Virology 152: 268

    PubMed  CAS  Google Scholar 

  8. Bender BS, Davidson BL, Kline R, Brown C, Quinn TC (1988) Role of the mononuclear phagocytic system in the immunopathogenesis of human immunodeficiency virus infection and the acquired immunodeficiency syndrome. Rev Infect Dis 10: 1142

    PubMed  CAS  Google Scholar 

  9. Beral V, Peterman T, Berkelman R, Jaffe H (1991) AIDS-associated non-Hodgkin lymphoma. Lancet 337: 805

    PubMed  CAS  Google Scholar 

  10. Bohnsack JF, Cooper NR (1988) CR2 ligands modulate human B cell activation. J Immunol 141: 2569

    PubMed  CAS  Google Scholar 

  11. Bolognesi DP (1989) Do antibodies enhance the infection of cells by HIV? Nature 340: 431

    PubMed  CAS  Google Scholar 

  12. Boyer V, Desgranges C, Trabaud M-A, Fischer E, Kazatchkine MD (1991) Complement mediates human immunodeficiency virus type 1 infection of a human T cell line in a CD4¯ and antibody-independent fashion. J Exp Med 173: 1151

    PubMed  CAS  Google Scholar 

  13. Boyer V, Delibrias C, Noraz N, Fischer E, Kazatchkine MD, Desgranges C (1992) Complement receptor type 2 mediates infection of the human CD4-negative Raji B-cell line with opsonized HIV. Scan J Immunol 36: 879

    CAS  Google Scholar 

  14. Burke SB (1992) Human HIV vaccine trials: does antibody-dependent enhancement pose a genuine risk? Perspect Biol Med 35: 511

    PubMed  CAS  Google Scholar 

  15. Carter RH, Fearon DT (1989) Polymeric C3dg primes human lymphocytes for proliferation induced by anti-IgM. J Immunol 143: 1755

    PubMed  CAS  Google Scholar 

  16. Carter RH, Fearon DT (1992) CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256: 105

    PubMed  CAS  Google Scholar 

  17. Carter RH, Spycher MO, Ng YC, Hoffman R, Fearon DT (1988) Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J Immunol 141: 457

    PubMed  CAS  Google Scholar 

  18. Chiodi F, Mathiesen T, Albert J, Parks E, Norrby E, Wahren B (1989) IgG subclass responses to a transmembrane protein (gp41) peptide in HIV infection. J Immunol 142: 3809

    PubMed  CAS  Google Scholar 

  19. Clark SJ, Saag MS, Decke WD, Campbell-Hill S, Roberson JL, Veldkamp PJ, Kappes JC, Hahn BH, Shaw GM (1991) High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N Engl J Med 324: 954

    PubMed  CAS  Google Scholar 

  20. Cohen JHM, Aubry JP, Revillard JP, Banchereau J, Kazatchkine MD (1989) Human T lymphocytes expressing the C3b/C4b complement receptor type one (CR1, CD35) belong to Fc7 receptor-positive CD4-positive T cells. Cell Immunol 121: 383

    PubMed  CAS  Google Scholar 

  21. Connor RI, Dinces NB, Howell AL, Romet-Lemonne J-L, Pasquali J-L, Fanger MW (1991) Fc receptors for IgG (FC7RS) on human monocytes and macrophages are not infectivity receptors for human immunodeficiency virus type 1 (HIV-1): studies using bispecific antibodies to target HIV-1 to various myeloid cell surface molecules, including FC7R. Proc Natl Acad Sci USA 88: 9593

    PubMed  CAS  Google Scholar 

  22. Cranage MP, Polyanskaya N, McBride B, Cook N, Ashworth LAE, Dennis M, Baskerville A, Green- away PJ, Corcoran T, Kitchen P, Rose J, Murphey-Corb M, Desrosiers RC, Stott EJ, Farrar GH (1993) Studies on the specificity of the vaccine effect elicited by inactivated simian immunodeficiency virus. AIDS Res Hum Retroviruses 9: 13

    PubMed  CAS  Google Scholar 

  23. Daar ES, Moudgil T, Meyer RD, Ho DD (1991) Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med 324: 961

    PubMed  CAS  Google Scholar 

  24. Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763

    PubMed  CAS  Google Scholar 

  25. Daniel V, Susal C, Weimer R, Zimmerman R, Huth-Kuhne A, Opelz G (1993) Association of T cell and macrophage dysfunction with surface gpl20-immunoglobulin-complement complexes in HIV- infected patients. Clin Exp Med 93: 152

    CAS  Google Scholar 

  26. Delibrias C-C, Mouhoub A, Fischer E, Kazatchkine MD (1994) CR1 (CD35) and CR2 (CD21) complement C3 receptors are expressed on normal human thymocytes and mediate infection of thymocytes with opsonized human immunodeficiency virus. Eur J Immunol 24: 2784

    PubMed  CAS  Google Scholar 

  27. Dempsey PW, Allison MED, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271: 348

    PubMed  CAS  Google Scholar 

  28. Dolin R, Graham BS, Greenberg SB, Tacket CO, Belshe RB, Midthun K, Clements ML, Gorse GJ, Horgan BW, Atmar RL, Karzon DT, Bonnez W, Fernie BF, Montefiori DC, Stablien DM, Smith GE, Koff WC, the NIAID AIDS Vaccine Clinical Trials Network (1991) The safety and immunogenicity of a human immunodeficiency virus type 1 (HIV-1) recombinant gpl60 candidate vaccine in humans. Ann Intern Med 114: 119

    CAS  Google Scholar 

  29. Eaton AM, Ugen KE, Weiner DB, Wildes T, Levy JA (1994) An anti-gp41 human monoclonal antibody that enhances HIV-1 infection in the absence of complement. AIDS Res Hum Retroviruses 10: 13

    PubMed  CAS  Google Scholar 

  30. Ebenbichler CF, Thielens NM, Vornhagen R, Marschang P, Arlaud GJ, Dierich MP (1991) Human immunodeficiency virus type 1 activates the classical pathway of complement by direct CI binding through specific sites in the transmembrane glycoprotein gp41. J Exp Med 174: 1417

    PubMed  CAS  Google Scholar 

  31. Erdie A, Fust G, Gergely J (1991) The role of C3 in the immune response. Immunol Today 12: 332

    Google Scholar 

  32. Fanger MW, Shen L, Graziano RF, Guyre PM (1989) Cytotoxicity mediated by human Fc receptors for IgG. Immunol Today 10: 92

    PubMed  CAS  Google Scholar 

  33. Fearon DT (1978) Regulation of membrane sialic acid of BIH-dependent decay dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci USA 75: 1971

    PubMed  CAS  Google Scholar 

  34. Fiscus SA, Folds JD, Horst CM van der (1993) Infectious immune complexes in HIV-1-infected patients. Viral Immunol 6: 135

    PubMed  CAS  Google Scholar 

  35. Fries LF, Friedman HM, Cohen GH, Eisenberg RJ, Hammer CH, Frank MM (1986) Glycoprotein C of Herpes simplex virus type 1 is an inhibitor of the complement cascade. J Immunol 137: 1636

    PubMed  CAS  Google Scholar 

  36. Geyer H, Holschbach C, Hunsman C, Schneider J (1988) Carbohydrates of human immunodefi-ciency virus: structures of oligosaccharides linked to the envelope glycoprotein gpl20. J Biol Chem 263: 11760

    PubMed  CAS  Google Scholar 

  37. Graham, BS, Wright PF (1995) Candidate AIDS Vaccines. N Engl J Med 333: 1331

    PubMed  CAS  Google Scholar 

  38. Gras GS, Dormont D,(1991) Antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus type 1 infection in a human, Epstein-Barr virus- transformed B-lymphocytic cell line. J Virol 65:541

    Google Scholar 

  39. Gras G, Richard Y, Roques P, Olivier R, Dormont D (1993) Complement and virus-specific antibody- dependent infection of normal B lymphocytes by human immunodeficiency virus type 1. Blood 81: 1808

    PubMed  CAS  Google Scholar 

  40. Gray D, Skarvall H (1988) B-cell memory is short-lived in the absence of antigen. Nature 336: 70

    PubMed  CAS  Google Scholar 

  41. Grosjean I, Lachaux A, Bella C, Aubry J-P, Bonnefoy J-V, Kaiserlian D (1994) CD23/CD21 interaction is required for presentation of soluble protein antigen by lymphoblastoid B cell lines to specific CD4+ T cell clones. Eur J Immunol 24: 2982

    PubMed  CAS  Google Scholar 

  42. Halstead SB (1982) Immune enhancement of viral infection. Prog Allergy 31: 301

    PubMed  CAS  Google Scholar 

  43. Harada S, Yoshiyama H, Yamamoto N (1985) Effect of heat and fresh human serum on the infectivity of human T cell lymphotropic virus type III evaluated with new bioassay systems. J Clin Microbiol 22: 908

    PubMed  CAS  Google Scholar 

  44. Haurum JS, Thiel S, Jones IM, Fischer PB, Laursen SB, Jensenius JC (1993) Complement activation upon binding of mannan-binding protein to HIV envelope glycoproteins. J Acquir Immune Defic Syndr 7: 1307

    CAS  Google Scholar 

  45. Heath SL, Tew JG, Tew JG, Szakal AK, Burton GF (1995) Follicular dendritic cells and human immunodeficiency virus infectivity. Nature 377: 740

    PubMed  CAS  Google Scholar 

  46. Hebell T, Ahearn JM, Fearon DT (1991) Suppression of the immune response by a soluble complement receptor of B lymphocytes. Science 254: 102

    PubMed  CAS  Google Scholar 

  47. Heyman B, Wiersma EJ, Kinoshita T (1991) In vivo inhibition of the antibody response by a complement receptor-specific monoclonal antibody. J Exp Med 172: 665

    Google Scholar 

  48. Hirsch RL (1982) The complement system: its importance in the host response to viral infection. Microbiol Rev 46: 71

    PubMed  CAS  Google Scholar 

  49. Hirsch RL, Wolinsky JS, Winkelstein J A (1986) Activation of the alternative complement pathway by mumps infected cells: relationship to viral neuraminidase activity. Arch Virol 87: 181

    PubMed  CAS  Google Scholar 

  50. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1-infection. Nature 373: 123

    PubMed  CAS  Google Scholar 

  51. Hoke CH, Nisalak A, Sangawhipa N, Jatanasen S, Laorakapongse T, Innis BL, Kotchasenee S-O, Gingrich JB, Latendresse J, Fukai K, Burke DS (1988) Protection against japanese encephalitis by inactivated vaccines. N Engl J Med 319: 608

    PubMed  CAS  Google Scholar 

  52. Homsy J, Meyer M, Tateno M, Clarkson S, Levy JA (1989) The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science 244: 1357

    PubMed  CAS  Google Scholar 

  53. Homsy J, Meyer M, Levy J A (1990) Serum enhancement of human immunodeficiency virus (HIV) infection correlates with disease in HIV-infected individuals. J Virol 64: 1437

    PubMed  CAS  Google Scholar 

  54. Inada Y, Lange M, McKinley GF, Sonnabend JA, Fonville TW, Kanemitsu T, Tanaka M, Clark WS (1986) Hematologic correlates and the role of erythrocyte CR1 (C3b receptors) in the development of AIDS. AIDS Res 2: 235

    PubMed  CAS  Google Scholar 

  55. Jacob J, Kelsoe G, Rajewsky K, Weiss U (1991) Intraclonal generation of antibody mutants in germinal centres. Nature 354: 389

    PubMed  CAS  Google Scholar 

  56. Joling P, Bakker LJ, Van Strijp JAG, Meerloo T, Graaf L de, Dekker MEM, Goudsmit J, Verhoef J, Schuurman H-J (1993) Binding of human immunodeficiency virus type-1 to follicular dendritic cells in vitro is complement dependent. J Immunol 150: 1065

    PubMed  CAS  Google Scholar 

  57. Jouault T, Chapuis F, Olivier R, Parravicini C, Bahraoui E, Gluckman J-C (1989) HIV infection of monocytic cells: role of antibody-mediated virus binding to Fc7 receptors. AIDS 3: 125

    PubMed  CAS  Google Scholar 

  58. Jouvin M-H, Rozenbaum W, Russo R, Kazatchkine MD (1987) Decreased expression of the C3b/C4b complement receptor (CR1) in AIDS and AIDS-related syndromes correlates with clinical subpopu- lations of patients with HIV infection. J Acquir Immune Defic Syndr 1: 89

    CAS  Google Scholar 

  59. June RA, Schade SZ, Bankowski MJ, Kuhns M, McNamara A, Lint TF, Landay AL, Spear GT (1991) Complement and antibody mediate enhancement of HIV infection by increasing virus binding and provirus formation. J Acquir Immune Defic Syndr 5: 269

    CAS  Google Scholar 

  60. June RA, Landay AL, Stefanik K, Lint TF, Spear GT (1992) Phenotypic analysis of complement receptor 2+ T lymphocytes: reduced expression on CD4+ cells in HIV-infected persons. Immunology 75: 59

    PubMed  CAS  Google Scholar 

  61. Keefer MC, Graham BS, Belshe RB, Schwartz D, Corey L, Bolognesi DP, Stablein DM, Montefiori DC, McElrath J, Clements ML, Gorse GJ, Wright PF, Matthews TJ, Smith GE, Lawrence D, Dolin R, the NIAID AIDS Vaccine Clinical Trials Network (1994) Studies of high doses of a human immunodeficiency virus type 1 (HIV-1) recombinant gpl60 candidate vaccine in HIV-1 seronegative humans. AIDS Res Hum Retroviruses 10: 1713

    CAS  Google Scholar 

  62. Khalife J, Guy B, Capron M, Kieny M-P, Ameisen J-C, Montagnier L, Lecocq J-P, Capron A (1988) Isotypic restriction of antibody response to human immunodeficiency virus. AIDS Res Hum Retroviruses 4: 3

    PubMed  CAS  Google Scholar 

  63. Kinoshita T (1991) Biology of complement: the overture. Immunol Today 12: 291

    PubMed  CAS  Google Scholar 

  64. Klasse PJ, Blomberg J (1987) Patterns of antibodies to human immunodeficiency virus proteins in different subclasses of IgG. J Infect Dis 156: 1026

    PubMed  CAS  Google Scholar 

  65. Klaus GGB, Humphrey JH, Kunkle A, Dongworth DW (1980) The follicular dendritic cell: its role in antigen presentation in the generation of immunological memory. Immunol Rev 53: 3

    PubMed  CAS  Google Scholar 

  66. Kliks SC, Shioda T, Haigwood NL, Levy JA (1993) V3 variability can influence the ability of an antibody to neutralize or enhance infection by diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90: 11518

    PubMed  CAS  Google Scholar 

  67. Kobayashi K, Takeda A, Green S, Tuazon CU, Ennis FA (1993) Direct detection of infectious human immunodeficiency virus type 1 (HIV-1) immune complexes in the sera of HIV-1-infected persons. J Infect Dis 168: 729

    PubMed  CAS  Google Scholar 

  68. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631

    PubMed  CAS  Google Scholar 

  69. Kotwal GJ, Isaacs SN, McKenzie R, Frank MM, Moss B (1990) Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250: 827

    PubMed  CAS  Google Scholar 

  70. Kowalski M, Potz J, Basiripour L, Dorfman T, Goh WC, Terwilliger E, Dayton A, Rosen C, Haseltine W, Sodroski J (1987) Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237: 1351

    PubMed  CAS  Google Scholar 

  71. Kozlowski PA, Black KP, Shen L, Jackson S (1995) High prevalence of serum IgA HIV-1-infection- enhancing antibodies in HIV-infected persons. J Immunol 154: 6163

    PubMed  CAS  Google Scholar 

  72. Lachman PJ (1991) The control of homologous lysis. Immunol Today 12: 312

    Google Scholar 

  73. Langlois AJ, Weinhold KJ, Matthews TJ, Greenberg ML, Bolognesi DP (1992) Detection of anti- human cell antibodies in sera from macaques immunized with whole inactivated virus. AIDS Res Hum Retroviruses 8: 1641

    PubMed  CAS  Google Scholar 

  74. Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ (1987) Delineation of a region of the human immunodeficiency virus gpl20 glycoprotein critical for interaction with the CD4 receptor. Cell 50: 975

    PubMed  CAS  Google Scholar 

  75. Laurence J, Saunders A, Early E, Salmon JE (1990) Human immunodeficiency virus infection of monocytes: relationship to Fcγ receptors and antibody-dependent viral enhancement. Immunol 70: 338

    CAS  Google Scholar 

  76. Lederman MM, Purvis SF, Walter EI, Carey JT, Medof ME (1989) Heightened complement sensitivity of acquired immunodeficiency syndrome lymphocytes related to diminished expression of decay- acelerating factor. Proc Natl Acad Sci USA 86: 4205

    PubMed  CAS  Google Scholar 

  77. Liu Y-J, Johnson GD, Gordon J, MacLennan ICM (1992) Germinal centres in T cell-dependent antibody responses. Immunol Today 13: 17

    PubMed  CAS  Google Scholar 

  78. Luxembourg AT, Cooper NR (1994) Modulation of signaling via the B cell antigen receptor by CD21, the receptor for C3dg and EBV. J Immunol 153: 4448

    PubMed  CAS  Google Scholar 

  79. Mabondzo A, Aussage P, Bartholeyns J, Le Naour R, Raoul H, Romet-Lemonne J-L, Dormont D (1992) Bispecific antibody targeting of human immunodeficiency virus type 1 (HIV-1) glycoprotein 41 to human macrophages through the Fc IgG receptor I mediates neutralizing effects in HIV-1-infection. J Infect Dis 166:93

    Google Scholar 

  80. Mann DL, Hamlin-Green G, Willoughby A, Landesman SH, Goedert, JJ (1994) Immunoglobulin class and subclass antibodies to HIV proteins in maternal serum: association with perinatal transmission. J Acquir Immune Defic Syndr 7: 617

    PubMed  CAS  Google Scholar 

  81. Marschang P, Gurtler L, Totsch M, Thielens NM, Arlaud GJ, Hittmair A, Katinger H, Dierich MP (1993) HIV-1 and HIV-2 isolates differ in their ability to activate the complement system on the surface of infected cells. J Acquir Immune Defic Syndr 7: 903

    CAS  Google Scholar 

  82. Marschang P, Sodroski J, Wurzner R, Dierich MP (1995) Decay-accelerating factor (CD55) protects human immunodeficiency virus type 1 from inactivation by human complement. Eur J Immunol 25: 285

    PubMed  CAS  Google Scholar 

  83. Martinez-Maza O, Crabb E, Mitsuyasu RT, Fahey JL, Giorgi JV (1987) Infection with the human immunodeficiency virus (HIV) is associated with an in vivo increase in B lymphocyte activation and immaturity. J Immunol 138: 3720

    PubMed  CAS  Google Scholar 

  84. Mascola JR, Matthieson BJ, Zack PM, Walker MC, Halstead SB, Burke DS (1993) Summary report: workshop on the potential risks of antibody-dependent enhancement in human HIV vaccine trials. AIDS Res Hum Retroviruses 9: 1175

    PubMed  CAS  Google Scholar 

  85. Matsumoto AK, Kopicky-Burd J, Carter RH, Tuveson DA, Tedder TF, Fearon DT (1991) Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte- containing complement receptor type 2 and CD19. J Exp Med 173: 55

    PubMed  CAS  Google Scholar 

  86. McClure MO, Marsh M, Weiss RA (1987) Human immunodeficiency virus type 1 infection of CD4- bearing cells occurs by a pH-independent mechanism. EMBO J 7: 513

    Google Scholar 

  87. McHugh TM, Stites DP, Busch MP, Krowka JF, Strieker RB, Hollander H (1988) Relation of circulating levels of human immunodeficiency virus (HIV) antigen, antibody to p24, and HIV-containing immune complexes in HIV-infected patients. J Infect Dis 158: 1088

    PubMed  CAS  Google Scholar 

  88. McSharry JJ, Pickering RJ, Caliguiri LA (1981) Activation of the alternate complement pathway by enveloped viruses containing limited amounts of sialic acid. Virology 114: 507

    PubMed  CAS  Google Scholar 

  89. Melchers F, Erdei A, Schultz T, Dierich MP (1985) Growth control of activated, synchronized murine B cells by the C3d fragment of human complement. Nature 317: 264

    PubMed  CAS  Google Scholar 

  90. Mizouchi T, Spellman MW, Larkin M, Solomon J, Basa LJ, Feizi T (1988) Carbohydrate structures of the human immunodeficiency virus (HIV) recombinant envelope glycoprotein gpl20 produced in Chinese hamster ovary cells. Biochem J 254: 599

    Google Scholar 

  91. Montefiori DC (1995) New insights into the role of host ceil proteins in antiviral vaccine protection. AIDS Res Hum Retroviruses 11: 1429

    PubMed  CAS  Google Scholar 

  92. Montefiori DC (1996) Role of complement in HIV and SIV pathogenesis and immunity. In: Eible MM, Huber C, Peter HH, Wahn U (eds) Symposium in Immunology. V Antiviral Immunity. Springer, Heidelberg Berlin New York, pp 31 - 53

    Google Scholar 

  93. Montefiori DC, Robinson WE, Mitchell WM (1989) Antibody-independent, complement-mediated enhancement of HIV-1-infection by mannosidase I and II inhibitors. Antiviral Res 11: 137

    PubMed  CAS  Google Scholar 

  94. Montefiori DC, Robinson WE Jr, Hirsch VM, Modliszewski A, Mitchell WM, Johnson PR (1990) Antibody-dependent enhancement of simian immunodeficiency virus (SIV) infection in vitro by plasma from SIV-infected rhesus monkeys. J Virol 64: 113

    PubMed  CAS  Google Scholar 

  95. Montefiori DC, Lefkowitz LB, Keller RE, Holmberg V, Sandstrom E, Phair JP, the Multicenter AIDS Cohort Study Group (1991) Absence of a clinical correlation for complement-mediated, infection- enhancing antibodies in plasma and sera from HIV-1 infected persons. J Acquir Immune Defic Syndr 5: 513

    Google Scholar 

  96. Montefiori DC, Graham BS, Kliks S, Wright PF, the NIAID AIDS Vaccine Clinical Trials Nework (1992) Serum antibodies to HIV-1 in recombinant vaccinia virus recipients boosted with purified recombinant gpl60. J Clin Immunol 12: 429

    CAS  Google Scholar 

  97. Montefiori DC, Zhou J, Shaff DI (1992) CD4-independent binding of HIV-1 to the B lymphocyte receptor CR2 (CD21) in the presence of complement and antibody. Clin Exp Immunol 90: 383

    PubMed  CAS  Google Scholar 

  98. Montefiori DC, Stewart K, Ahearn JM, Zhou JT, Zhou JY (1993) Complement-mediated binding of naturally glycosylated and glycosylation-modified human immunodeficiency virus type 1 to human CR2 (CD21). J Virol 67: 2699

    PubMed  CAS  Google Scholar 

  99. Montefiori DC, Cornell RJ, Zhou JY, Zhou JT, Hirsch VM, Johnson PR (1994) Complement control proteins, CD46, CD55, and CD59, as common surface constituents of human and simian immunodeficiency viruses and possible targets for vaccine protection. Virology 205: 82

    PubMed  CAS  Google Scholar 

  100. Montefiori DC, Graham BS, Zhou JY, Zhou JT, Ahearn JM (1994) Binding of human immunodeficiency virus type 1 to the C3b/C4b receptor, CR1 (CD35), and red blood cells in the presence of envelope-specific antibodies and complement. J Infect Dis 170: 429

    PubMed  CAS  Google Scholar 

  101. Montefiori DC, Reimann KA, Letvin NL, Zhou J, Hu S-L (1995) Studies of complement-activating antibodies in the SIV/macaque model of acute primary infection and vaccine protection. AIDS Res Hum Retroviruses 11:963

    PubMed  CAS  Google Scholar 

  102. Montefiori DC, Pantaleo G, Fink LM, Zhou JT, Zhou JY, Bilska M, Miralles GD, Fauci AS (1996) Neutralizing and infection-enhancing antibody responses to human immunodeficiency virus type 1 in long-term nonprogressors. J Infect Dis 173: 60

    PubMed  CAS  Google Scholar 

  103. Morrow WJW, Wharton M, Strieker RB, Levy J A (1986) Circulating immune complexes in patients with acquired immune deficiency syndrome contain the AIDS-associated retrovirus. Clin Immunol Immunopathol 40: 515

    PubMed  CAS  Google Scholar 

  104. Muller-Eberhard H (1988) Molecular organization and function of the complement system. Annu Rev Biochem 57: 321

    PubMed  CAS  Google Scholar 

  105. Nikolova EB, Tomana M, Russell MW (1994) All forms of human IgA antibodies bound to antigen interfere with complement (C3) fixation induced by IgG or antigen alone. Scand J Immunol 39: 275

    PubMed  CAS  Google Scholar 

  106. Nikolova EB, Tomana M, Russell MW (1994) The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human complement. Immunology 82: 321

    PubMed  CAS  Google Scholar 

  107. Nishanian P, Huskins KR, Stehn S, Detels R, Fahey JL (1990) A simple method for improved assay demonstrates that HIV p24 antigen is present as immune complexes in most sera from HIV-infected individuals. J Infect Dis 162:21

    PubMed  CAS  Google Scholar 

  108. Pantaleo G, Fauci AS (1995) New concepts in the immunopathogenesis of HIV infection. Annu Rev Immunol 13: 487

    PubMed  CAS  Google Scholar 

  109. Pantaleo G, Graziosi C, Demarest JF, Cohen OJ, Vaccarezza, Gantt K, Muro-Cacho C, Fauci AS (1994) Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunol Rev 140: 105

    PubMed  CAS  Google Scholar 

  110. Pardo V, Aldana M, Colton RM, Fischl MA, Jaffe D, Moskowitz L, Hensley GT, Burgoignie J (1984) Glomerular lesions in the acquired immunodeficiency syndrome. Ann Intern Med 101: 429

    PubMed  CAS  Google Scholar 

  111. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271: 1582

    PubMed  CAS  Google Scholar 

  112. Perno C-F, Baseler MW, Broder S, Yarchoan R (1990) Infection of monocytes by human immunodeficiency virus type 1 blocked by inhibitors of CD4-gpl20 binding, even in the presence of enhancing antibodies. J Exp Med 171: 1043

    PubMed  CAS  Google Scholar 

  113. Perricone R, Fontana L, De Carolis C, Carini C, Sirianni MC, Aiuti F (1987) Evidence for activation of complement in patients with AIDS related complex (ARC) and/or lymphadenopathy syndrome (LAS). Clin Exp Immunol 70: 500

    PubMed  CAS  Google Scholar 

  114. Pinter C, Siccardi AG, Longhi R, Clivio A (1995) Direct interaction of complement factor H with the CI domain of HIV type 1 glycoprotein 120. AIDS Res Hum Retroviruses 11: 577

    PubMed  CAS  Google Scholar 

  115. Porterfield JS (1986) Antibody-dependent enhancement of viral infectivity. Adv Virus Res 31: 335

    PubMed  CAS  Google Scholar 

  116. Rademacher TW, Parekh RB, Dwek RA (1988) Glycobiology. Annu Rev Biochem 57: 785

    CAS  Google Scholar 

  117. Ravetch JV, Kinet J-P (1991) Fc receptors. Annu Rev Immunol 9: 457

    CAS  Google Scholar 

  118. Reisinger EC, Vogetseder W, Berzow D, Kofler D, Bitterlich G, Lehr HA, Wachter H, Dierich MP (1990) Complement-mediated enhancement of HIV-1-infection of the monoblastoid cell line U937. J Acquir Immune Defic Syndr 4: 961

    CAS  Google Scholar 

  119. Reynes M, Aubert JP, Cohen JHM, Audouin J, Tricottet V, Diebold J, Kazatchkine MD (1985) Human follicular dendritic cells express CR1, CR2, and CR3 complement receptor antigens. J Immunol 135: 2687

    PubMed  CAS  Google Scholar 

  120. Robinson WE, Montefiori DC, Mitchell WM (1988) Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet 1: 790

    PubMed  Google Scholar 

  121. Robinson WE, Montefiori DC, Gillespie DH, Mitchell WM (1989) Complement-mediated, antibody- dependent enhancement of HIV-1-infection in vitro is characterized by increased protein and RNA synthesis and infectious virus release. J Acquir Immune Defic Syndr 2: 33

    PubMed  CAS  Google Scholar 

  122. Robinson WE, Kawamura T, Lake D, Masuho Y, Mitchell WM, Hersh EM (1990) Antibodies to the primary immunodominant domain of human immunodeficiency virus type 1 (HIV-1) glycoprotein gp41 enhance HIV-1-infection in vitro. J Virol 64: 5301

    PubMed  CAS  Google Scholar 

  123. Robinson WE, Montefiori DC, Mitchell WM (1990) Complement-mediated antibody-dependent en-hancement of HIV-1 infection requires CD4 and complement receptors. Virology 175: 600

    PubMed  CAS  Google Scholar 

  124. Robinson WE, Gorny MW, Xu J-Y, Mitchell WM, Zolla-Pazner S (1991) Two immunodominant domains of gp41 bind antibodies which enhance human immunodeficiency virus type 1 infection in vitro. J Virol 65: 4169

    PubMed  CAS  Google Scholar 

  125. Ross GD, Medof E (1985) Membrane complement receptors specific for bound fragments of C3. Adv Immunol 37: 217

    PubMed  CAS  Google Scholar 

  126. Rosse WF (1987) The spleen as a filter. N Engl J Med 317: 704

    PubMed  CAS  Google Scholar 

  127. Rother RP, Rollins SA, Fodor WL, Albrecht J-C, Setter E, Fleckenstein B, Squinto SP (1994) Inhibi-tion of complement-mediated cytolysis by the terminal complement inhibitor of herpesvirus saimiri. J Virol 68: 730

    PubMed  CAS  Google Scholar 

  128. Russell MW, Mansa B (1989) Complement-fixing properties of human IgA antibodies. Scand J Immunol 30: 175

    PubMed  CAS  Google Scholar 

  129. Saifuddin M, Parker CJ, Peeples ME, Gorny MK, Zolla-Pazner S, Ghassemi M, Rooney IA, Atkinson JP, Spear GT (1995) Role of virion-associated giycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1. J Exp Med 182: 501

    PubMed  CAS  Google Scholar 

  130. Schifferli JA, Ng YC, Estreicher J, Walport MJ (1988) The clearance of tetanus toxoid-anti-tetanus toxoid immune complexes from the circulation of humans: complement- and erythrocyte CR1- dependent mechanisms. J Immunol 141: 899

    Google Scholar 

  131. Schmitz J, Lunzen J van, Tenner-Racz K, Grosschupff G, Racz P, Schmitz H, Dietrich M, Hufert F (1994) Follicular dendritic cells (FDC) are not productively infected with HIV-1 in vivo. Adv Exp Med Biol 355: 165

    PubMed  CAS  Google Scholar 

  132. Schmitz J, Zimmer JP, Kluxen B, Aries S, Bogel M, Gigli I, Schmitz H (1995) Antibody-dependent complement-mediated cytotoxicity in sera from patients with HIV-1-infection is controlled by CD55 and CD59. J Clin Invest 95: 1520

    Google Scholar 

  133. Schumaker V, Calcott M, Spiegelberg H, Muller-Eberhard H (1976) Ultracentrifuge studies of the binding of IgG of different subclasses to the Clq subunit of the first component of complement. Biochemistry 15: 5175

    PubMed  CAS  Google Scholar 

  134. Schupbach J, Tomasik Z, Jendis J, Boni J, Seger R, Kind C (1994) IgG, IgM, and IgA response to HIV in infants born to HIV-1 infected mothers. J AIDS 7: 421

    CAS  Google Scholar 

  135. Scott, ME, Landay AL, Lint TF, Spear GT (1993) In vivo decrease in the expression of complement receptor 2 on B-cells in HIV infection. J Acquir Immune Defic Syndr 7: 37

    CAS  Google Scholar 

  136. Senaldi G, Peakman M, McManus T, Davies ET, Tee DEH, Vergani D (1990) Activation of the complement system in human immunodeficiency virus infection: relevance of the classical pathway to pathogenesis and disease severity. J Infect Dis 162: 1227

    PubMed  CAS  Google Scholar 

  137. Senaldi G., Davies ET, Mahalingham M, Lu J, Pozniak A, Peakman M, Reid KBM, Vergani D (1995) Circulating levels of mannose binding protein in human immunodeficiency virus infection. J Infect 31: 145

    PubMed  CAS  Google Scholar 

  138. Serraino D, Salamina G, Franceschi S, Dubois D, La Vecchia C, Brunet JB, Ancelle-Park RA (1992) The epidemiology of AIDS-associated non-Hodgkin’s lymphoma in the World Health Organization European Region. Br J Cancer 66: 912

    PubMed  CAS  Google Scholar 

  139. Shadduck PP, Weinberg JB, Haney AF, Bartlett JA, Langlois AJ, Bolognesi DP, Matthews TJ (1991) Lack of enhancing effect of human anti-human immunodeficiency virus type 1 (HIV-1) antibody on HIV-1-infection of human blood monocytes and peritoneal macrophages. J Virol 65: 4309

    PubMed  CAS  Google Scholar 

  140. Shirai A, Cosentino M, Leitman-Klinman SF, Klinman DM (1992) Human immunodeficiency virus infection induces both polyclonal and virus-specific B cell activation. J Clin Invest 89: 561

    PubMed  CAS  Google Scholar 

  141. Siebelink KHJ, Tyhaar E, Huisman RC, Huisman W, Ronde A de, Darby IH, Francis MJ, Rim-melzwaan GF, Osterhaus ADME (1995) Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines. J Virol 69: 3704

    PubMed  CAS  Google Scholar 

  142. Smiley ML, Friedman HM (1985) Binding of complement component C3b to glycoprotein C is modulated by sialic acid on herpes simplex virus type 1-infected cells. J Virol 55: 857

    PubMed  CAS  Google Scholar 

  143. Soelder BM, Schultz TF, Hengster P, Lower J, Larcher C, Bitterlich G, Kurth R, Wachter H, Dierich MP (1989) HIV and HIV-infected cells differentially activate the human complement system independently of antibody. Immunol Lett 22: 135

    CAS  Google Scholar 

  144. Soelder BM, Reisinger EC, Koefler D, Bitterlich G, Wachter H, Dierich MP (1989) Complement receptors: another port of entry for HIV. Lancet 11: 271

    Google Scholar 

  145. Spear GT, Jiang H, Sullivan BL, Gewurz H, Landay AL, Lint TF (1991) Direct binding of complement component Clq to human immunodeficiency virus (HIV) and human T lymphoptropic virus-I (HTLV- I) coinfected cells. AIDS Res Hum Retroviruses 7: 579

    PubMed  CAS  Google Scholar 

  146. Spear GT, Takefman DM, Sullivan BL, Landay AL, Jennings MB, Carlson JR (1993) Anti-cellular antibodies in sera from vaccinated macaques can induce complement-mediated virolysis of human immunodeficiency virus and simian immunodeficiency virus. Virology 195: 475

    PubMed  CAS  Google Scholar 

  147. Spiegelberg HL (1974) Biological activities of immunoglobulins of different classes and subclasses. Adv Immunol 19: 259

    PubMed  CAS  Google Scholar 

  148. Starcich BR, Hahn BH, Shaw GM, McNeely PD, Modrow S, Wolf H, Parks ES, Parks WP, Josephs SF, Gallo RC, Wong-Staal F (1986) Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell 45: 637

    PubMed  CAS  Google Scholar 

  149. Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987) pH-independent HIV entry into CD4-positive cells via virus envelope fusion to the plasma membrane. Cell 49:659

    PubMed  CAS  Google Scholar 

  150. Stoiber H, Pinter C, Siccardi AG, Clivio, A, Dierich MP (1996) Efficient destruction of human immunodeficiency virus in human serum by inhibiting the protective action of complement factor H and decay accelerating factor (DAF, CD55). J Exp Med 183: 307

    PubMed  CAS  Google Scholar 

  151. Suga T, Endoh M, Sakai H, Miura M, Tomino Y, Nomoto Y (1985) T-alpha cell subsets in human peripheral blood. 1989. J Immunol 134: 1327

    PubMed  CAS  Google Scholar 

  152. Sundquist V-A, Linde A, Kurth R, Werner A, Helm EB, Popovic M, Gallo RC, Wahren B (1986) Restricted IgG subclass responses to HTLV-III/LAV and to cytomegalovirus in patients with AIDS and lymphadenopathy syndrome. J Infect Dis 153: 970

    Google Scholar 

  153. Susal C, Kirschfink M, Kropelin M, Daniel V, Opelz G (1994) Complement activation by recombinant HIV-1 glycoprotein gpl20. J Immunol 152: 6028

    PubMed  CAS  Google Scholar 

  154. Takeda A, Tuazon CU, Ennis FA (1988) Antibody-enhanced infection by HIV-1 via Fc receptor- mediated entry. Science 242: 580

    PubMed  CAS  Google Scholar 

  155. Takeda A, Sweet RW, Ennis FA (1990) Two receptors are required for antibody-dependent enhancement of human immunodeficiency virus type 1 infection: CD4 and FC7R. ’J Virol 64: 5605

    CAS  Google Scholar 

  156. Tausk FA, McCutchan JA, Spechko P, Schreiber RD, Gigli I (1986) Altered erythrocyte C3b receptor expression, immune complexes, and complement activation in homosexual men in varying risk groups for acquired immune deficiency syndrome. J Clin Invest 78: 977

    PubMed  CAS  Google Scholar 

  157. Tedder TF, Clement LY, Cooper MD (1984) Expression of C3d receptors during human B cell differentiation: immunofluorescence analysis with the HB-5 monoclonal antibody. J Immunol 133: 678

    PubMed  CAS  Google Scholar 

  158. Tew JG, Mandel TE (1978) The maintenance and regulation of serum antibody levels: evidence indicating a role for antigen retained in lymphoid follicles. J Immunol 120: 1063

    PubMed  CAS  Google Scholar 

  159. Theil S (1992) Mannan-binding protein, a complement activating animal lectin. Immunopharmacology 24: 91

    Google Scholar 

  160. Theiler M, Smith HH (1937) The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65: 787

    PubMed  CAS  Google Scholar 

  161. Thieblemont N, Haeffner-Cavaillon N, Ledur A, L’age-Stehr J, Ziegler-Heitbrock HWL, Kazatchkine MD (1993) CR1 (CD35) and CR3 (CDllb/CD18) mediate infection of human monocytes and monocytic cell lines with complement-opsonized HIV independently of CD4. Clin Exp Immunol 92: 106

    PubMed  CAS  Google Scholar 

  162. Thieblemont N, Haeffner-Cavaillon N, Weiss L, Maillet F, Kazatchkine MD (1993) Complement activation by gpl60 glycoprotein of HIV-1. AIDS Res Hum Retroviruses 9: 229

    PubMed  CAS  Google Scholar 

  163. Thielens NM, Bally IM, Ebenbichler CF, Dierich, MP, Arlaud GJ (1993) Further characterization of the interaction between the Clq subcomponent of human CI and the transmembrane envelope glycoprotein gp41 of HIV-1. J Immunol 151: 6583

    PubMed  CAS  Google Scholar 

  164. Thyphronitis G, Kinoshita T, Inoue K, Schweinle JE, Tsokos GC, Mecalf ES, Finkelman FD, Balow JE (1991) Modulation of mouse complement receptors 1 and 2 suppresses antibody response in vivo. J Immunol 147: 224

    PubMed  CAS  Google Scholar 

  165. Toth FD, Mosborg-Petersen P, Kiss J, Aboagye-Mathiesen G, Zdravkovic M, Hager H, Aranyosi J, Lampe L, Ebbesen P (1994) Antibody-dependent enhancement of HIV-1-infection in human term syncytiotrophoblast cells cultured in vitro. Clin Exp Immunol 96: 389

    PubMed  CAS  Google Scholar 

  166. Tremblay M, Meloche S, Sekaly RP, Wainberg MA (1990) Complement receptor type 2 mediates enhancement of human immunodeficiency virus type 1 infection in Epstein-Barr virus-carrying B cells. J Exp Med 171: 1791

    PubMed  CAS  Google Scholar 

  167. Trischmann H, Davis D, Lachmann PJ (1995) Lymphocytic strains of HIV-1 when complexed with enhancing antibodies can infect macrophages via FC7RIII. independently of CD4. AIDS Res Hum Retroviruses 11: 343

    PubMed  CAS  Google Scholar 

  168. Tsokos GC, Lambris JD, Finkelman FD, Anastassiou ED, June CH (1990) Monovalent ligands of complement receptor 2 inhibit, whereas polyvalent ligands enhance anti-Ig-induced human B cell intracytoplasmic-free calcium concentration. J Immunol 144: 1640

    PubMed  CAS  Google Scholar 

  169. Veronese FM, DeVico AL, Copeland TD, Droszland S, Gallo RC, Sarngadharan MG (1985) Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene. Science 229: 1402

    PubMed  CAS  Google Scholar 

  170. Wang S Z-S, Rushlow KE, Issel CJ, Cook RF, Cook SJ, Raabe ML, Chong Y-H, Costa L, Monte-laro RC (1994) Enhancement of EIAV replication and disease by immunization with a baculovirus- expressed recombinant envelope surface glycoprotein. Virology 199: 247

    PubMed  CAS  Google Scholar 

  171. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson, JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373: 117

    PubMed  CAS  Google Scholar 

  172. Weiss L, Okada N, Haeffner-Cavaillon N, Hattori C, Faucher C, Kazatchkine MD, Okada H (1992) Decreased expression of the membrane inhibitor of complement-mediated cytolysis CD59 on T- lymphocytes of HIV-infected patients. J Acquir Immune Defic Syndr 6: 379

    CAS  Google Scholar 

  173. Wilson BS, Piatt JL, Kay NE (1985) Monoclonal antibodies to the 140,000 mol wt glycoprotein of B lymphocyte membranes (CR2 receptor) initiates proliferation of B cells in vitro. Blood 66: 824

    PubMed  CAS  Google Scholar 

  174. Wu XS, Okada N, Iwamori M, Okada H (1996) IgM natural antibody against an asialo-oligosaccharide, gangliotetraose (GG4), sensitizes HIV-1-infected cells for cytolysis by homologous complement. Int Immunol 8: 153

    PubMed  CAS  Google Scholar 

  175. Yefenof E, Asjo B, Klein E (1991) Alternative complement pathway activation by HIV infected cells: C3 fixation does not lead to complement lysis but enhances NK sensitivity. Int Immunol 3: 395

    PubMed  CAS  Google Scholar 

  176. Zeira M, Byrn RA, Groopman JE (1990) Inhibition of serum-enhanced HIV-1-infection of U937 monocytoid cells by recombinant soluble CD4 and anti-CD4 monoclonal antibody. AIDS Res Hum Retroviruses 6: 629

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montefiori, D.C. (1997). Role of complement and Fc receptors in the pathogenesis of HIV-1 infection. In: Fauci, A.S., Pantaleo, G. (eds) Immunopathogenesis of HIV Infection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60867-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60867-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64593-8

  • Online ISBN: 978-3-642-60867-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics