Skip to main content

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 157 Accesses

Abstract

The migration of neuronal precursors from germinal zones to neuronal layers is critical to the establishment of functional neural circuitry in developing brain. Previous work has identified a protein, astrotactin (ASTN), as the neuronal ligand for locomotion along the radial glial fiber system. Molecular cloning of astrotactin reveals that the molecule is a membrane associated glycoprotein with three EGF motifs and two FNIII domains. As shown by in vitro studies, the expressed bacterial fusion protein functions in neuronal migration, suggesting that astrotactin provides a mechanism for glia-guided migration. Genetic analyses indicate that the gene is located on Chromosome 1 in the mouse, in a region syntenic with lq25-27 in humans. Mutations in this area of the human genome are associated with microcephaly and other developmental anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alder J, Cho K, Hatten ME (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17: 389 – 399

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer S (1985) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movement. J Comp Neurol 231: 1 – 26

    Article  PubMed  CAS  Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166: 257 – 262

    Article  Google Scholar 

  • Clapham DE (1994) Direct G protein activation of ion channels. Annu Rev Neurosci 17: 441 – 464

    Article  PubMed  CAS  Google Scholar 

  • Edmondson JC, Hatten ME (1987) Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J Neurosci 7: 1928 – 1934

    PubMed  CAS  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA (1995) The inward rectifier potassium channel family. Curr Opin Neurobiol 5: 268 – 277

    Article  PubMed  CAS  Google Scholar 

  • Edmondson JC, Liem RKH, Kuster JC, Hatten ME (1988) Astrotactin, a novel cell surface antigen that mediates neuron-glia interactions in cerebellar microcultures. J Cell Biol 106: 505 – 517

    Article  PubMed  CAS  Google Scholar 

  • Fink JM, Hirsch BA, Zheng C, Dietz G, Hatten ME, Ross ME (1997) Astrotactin (ASTN), a gene for glial-guided neuronal migration, maps to human chromosome lq25.2. Genomics, 40: 202 – 205

    Article  PubMed  CAS  Google Scholar 

  • Fishell G, Hatten ME (1991) Astrotactin provides a receptor system for glia-guided neuronal migration. Development 113: 755 – 765

    PubMed  CAS  Google Scholar 

  • Fishman R, Hatten ME (1993) Multiple receptor systems promote CNS neuronal migration. J Neurosci 13: 3485 – 3495

    PubMed  CAS  Google Scholar 

  • Gao W-Q, Liu X-L, Hatten ME (1992) The weaver gene encodes a nonautonomous signal for CNS neuronal differentiation. Cell 68: 841 – 854

    Article  PubMed  CAS  Google Scholar 

  • Goldowitz D (1989) The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: evidence from homozygous weaver chimeras. Neuron 2: 1565 - 1575

    Article  PubMed  CAS  Google Scholar 

  • Goldowitz D, Mullen RJ (1982) Granule cell as a site of gene action in the weavercerebellum: evidence from heterozygous mutant chimeras. J Neurosci 2: 1474 – 1485

    PubMed  CAS  Google Scholar 

  • Gregory WA, Edmondson JC, Hatten ME, Mason CA (1988) Cytology and neuron-glia apposition of migrating cerebellar granule cells in vitro. J Neurosci 8: 1728 – 1738

    PubMed  CAS  Google Scholar 

  • Hatten ME (1993) The role of migration in central nervous system neuronal development, Curent Opinions in Neurobiology, 3: 38 – 44

    Article  CAS  Google Scholar 

  • Hatten ME (1990) Riding the glial monorail: a common mechanism for glial-guided migration in different regions of the developing brain. Trends Neurosci 13: 179 – 184

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (1992) The role of migration in central nervous system neuronal development. Curr Opin Neurobiol 3: 38 – 44

    Article  Google Scholar 

  • Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in developing cerebellum. Annu Rev Neurosci 18: 385 – 408

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME, Liem RKH, Mason CA (1986) Weaver mouse cerebellar granule neurons fail to migrate on wild type astroglial processes in vitro. J Neurosci 6: 2676 – 2683

    PubMed  CAS  Google Scholar 

  • Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66: 1061 – 1067

    Article  PubMed  CAS  Google Scholar 

  • Heintz N, Norman DJ, Gao W-Q, Hatten ME (1993) Neurogenetic approaches to mannalian brain development. In: Davies KE, Tilghman SM (eds) Genome analysis Volume 6. Genome maps and neurological disorders. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 19 – 44

    Google Scholar 

  • His JW, Ruffett TL (1889) Die Neuroblasten und deren Entstehung im embryonalen Mark. Abhand Math Phys Kl Konigl Sachs Ges Wiss 26: 313 – 372

    Google Scholar 

  • Hunter K, Hatten ME (1995) Radial glial cell transformation to astrocytes is bidirectional: Regulation by a diffusible factor in embryonic forebrain. Proc Natl Acad Sci USA 92: 2061 – 2065

    Article  PubMed  CAS  Google Scholar 

  • Jan YN, Jan LY (1990) Genes required for specifying cell fates in Drosophila embryonic sensory nervous system. Trends Neurosc 13: 493 – 498

    Article  CAS  Google Scholar 

  • Kofuji P, Davidson N, Lester HA (1995) Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by Gbg subunits and function as heteromultimers. Proc Natl Acad Sci USA 92: 6542 – 6546

    Article  PubMed  CAS  Google Scholar 

  • Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA, Hatten ME (1996) Functional analysis of the weaver mutant GIRK2 potassium channel and rescue of weaver granule cells. Neuron 16: 941 – 952

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Krapivinsky L, Velimirovic B, Wickman K, Navarro B, Clapham DE (1995) The cardiac inward rectifier K+ channel subunit, CIR, does not comprise the ATP-sensitive K+ channel, IkatpJ Biol Chem 270: 28777 – 28779

    Article  CAS  Google Scholar 

  • Kuhar SG; Feng L, Vidan S, Ross EM, Hatten ME, Heintz N (1993) Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117: 97 – 104

    PubMed  CAS  Google Scholar 

  • Kurachi Y (1995) G protein regulation of cardiac muscarinic potassium channel. Am J Physiol 38: C821 - C830

    Google Scholar 

  • Miale I, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Expl Neurol 4: 277 – 296

    Article  CAS  Google Scholar 

  • Miao GG, Smeyne RJ, D’Arcangelo G.n Copeland NG, Jenkins NA, Morgan JI, Curran T (1994) Isolation of an allele of reeler by insertional mutagenesis. Proc Nat Acad Sci USA 91: 11050 – 11054

    Article  PubMed  CAS  Google Scholar 

  • Misson J-P, Takahashi T, Caviness VS (1991 a) Early ontogeny of radial glial cells in the murine cerebral cortex. Glia 4:138-148

    Google Scholar 

  • Misson J-P, Austin CP, Takahashi T, Cepko CL, Caviness VS Jr (1991b) The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb Cortex 1: 221 - 229

    Article  CAS  Google Scholar 

  • North RA (1989) Drug receptors and the inhibition of nerve cells. Brit J Pharmacol 98: 13 - 28

    CAS  Google Scholar 

  • Nowakowski R, Rakic P (1979) The mode of migration of neurons to the hippocampus: a Golgi and electron microscopic analysis in fetal rhesus monkeys. J Neurocytol 8: 697 – 718

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke NA, Dailey ME, Smith SJ, McConnell SK (1992) Diverse migratory pathways in the developing cerebral cortex. Science 258: 299 – 302

    Article  PubMed  Google Scholar 

  • Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genet 11: 126 – 129

    Article  PubMed  CAS  Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317: 536 – 538

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A golgi and electron microscopic study in Macacus rhesus. J Comp Neurol 141: 183 – 312

    Article  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of foetal monkey neocortex. J Comp Neurol 145: 61 – 84

    Article  Google Scholar 

  • Rakic P, Sidman RL (1973) Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci USA 70: 240 - 244

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1978) Neuronal migration and contact guidance in the primate telencephalon Postgrad Med J 54: 25 – 40

    Google Scholar 

  • Rakic P, Caviness VS (1995) Cortical development: view from neurological mutants two decades later. Neuron 14: 1101 – 1104

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1889) Sobre las fibras nerviosas de la capa granulosa del cerebelo. Rev Trim de Histol Norm y Pathol 3 & 4:

    Google Scholar 

  • Ramon y Cajal S (1911) Histologic du systeme nerveux de Fhomme et des vertebres. Paris: Maloine (reprinted by Consejo Superior de Investigaciones Cientificas, Madrid, 1955)

    Google Scholar 

  • Rezai Z, Yoon H (1972) Abnormal rate of granule cell migration in the cerebellum of “weaver” mutant mice. Dev Biol 29: 17 – 26

    Article  PubMed  CAS  Google Scholar 

  • Rivas R, Hatten ME (1994) Motility and cytoskeletal organization of migrating cerebellar granule neurons. J Neurosci 15: 981 – 989

    Google Scholar 

  • Sauer FC (1935) The cellular structure of the neural tube. J Comp Neurol 63:12–23

    Article  Google Scholar 

  • Schaper A (1897) The earliest differentiation in the central nervous system of vertebrates. Science 5: 430 – 431

    Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration with special reference to developing human brain: A review. Brain Res 62: 1 – 35

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C, Changeux JP (1974) Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res 77: 484 – 491

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Jan YN, Jan LY (1995) Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15: 1441 – 1447

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Zhong R, Heintz N (1996) Granule cell specification in the developing mouse brain as defined by expression of the zinc finger transcription factor RU49. Development 122: 555 – 566

    PubMed  CAS  Google Scholar 

  • Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, a gene which supports neuronal migration along glial fibers. Science 272: 417 – 419

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, C. et al. (1997). Mechanisms of Neuronal Migration. In: Galaburda, A.M., Christen, Y. (eds) Normal and Abnormal Development of the Cortex. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60861-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60861-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64590-7

  • Online ISBN: 978-3-642-60861-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics