Advertisement

Novel Microscope-Based Approaches for the Investigation of Protein-Protein Interactions in Signal Transduction

  • György Vereb
  • Christoph K. Meyer
  • Thomas M. Jovin
Part of the NATO ASI Series book series (volume 102)

Abstract

In addition to the biochemical characterization of interacting proteins, the spatiotemporal localisation in situ or in vivo of the transiently associating participants of a cascade mechanism can greatly enhance our understanding of the given signal transduction process. However, the mere determination of colocalization based on fluorescent tags that are compatible with the in vivo observation does not generally suffice due to the limitation in resolution imposed by optical diffraction in conventional light microscopy.

Keywords

Fluorescence Resonance Energy Transfer Scanning Force Microscopy Fluorescence Resonance Energy Transfer Efficiency Conventional Light Microscopy Fluorescence Resonance Energy Transfer Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Förster T. (1946) Energiewanderung and Fluoreszenz. Naturwissenschaften, 6, 166–175.CrossRefGoogle Scholar
  2. 2.
    Stryer L, Haugland RP. (1967) Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA, 58, 719–726.PubMedCrossRefGoogle Scholar
  3. 3.
    Szöllösi J, Trón L, Damjanovich S, Helliwell SH, Arndt-Jovin D, Jovin TM. (1984) Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry, 5, 210–216.PubMedCrossRefGoogle Scholar
  4. 4.
    Jovin TM, Arndt-Jovin D. (1989) FRET Microscopy: Digital imaging of fluorescence resonance energy transfer. Application in cell biology. In: Cell Structure and Function by Microspectrofluorometry. (eds. E Kohen, JG Hirschberg). Academic Press, New York.Google Scholar
  5. 5.
    Jovin TM, Arndt-Jovin DJ. (1989) Luminescence digital imaging microscopy. Arms. Rev. Biophys. Biophys. Chem., 18, 271–308.CrossRefGoogle Scholar
  6. 6.
    Kubitscheck U, Schweitzer-Sterner R, Arndt-Jovin DJ, Jovin TM, Pecht I. (1993) Distribution of type I Fcε -receptors on the surface of mast cells probed by fluorescence resonance energy transfer. Biophys. J., 64, 110–120.PubMedCrossRefGoogle Scholar
  7. 7.
    Damjanovich S, Vereb G, Jr., Schaper A, Jenei A, Matkó J, Std JP, Fox GQ, Arndt-Jovin DJ, Jovin TM. (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA, 92, 1122–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Bastiaens PIH, Jovin TM. (1996) FRET microscopy in cellular signal transduction. In: NATO Advanced Research Workshop: Analytical use of fluorescent probes in oncology. (eds. E Kohen, JG Hirschberg). Plenum Press, Miami, FLGoogle Scholar
  9. 9.
    Bastiaens PIH, Majoul IV, Verveer PJ, Söling HD, Jovin TM. (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J., 15, 4246–4253.PubMedGoogle Scholar
  10. Bastiaens PIH, Jovin TM. (119N) Fluorescence resonance energy transfer (FRET) microscopy. In: Cell Biology: a Laboratory Handbook, 2nd ed. (ed. JE Cells) Academic Press, San Diego, CAGoogle Scholar
  11. 11.
    Binnig G, Quate CF, Gerber C. (1986) Atomic force microscopy. Phys. Rev. Lett., 56, 930–933.CrossRefGoogle Scholar
  12. 12.
    Hoh JH, Hansma PK. (1992) Atomic force microscopy for high-resolution imaging in cell biology. Trends Cell. Biol., 2, 208–213.Google Scholar
  13. 13.
    Matkó J, Bushkin Y, Wei T, Edidin M. (1994) Clustering of class I MHC molecules on the surfaces of activated and transformed human cells. J. Immunol., 152, 3355–3360.Google Scholar
  14. 14.
    Vereb G, Jr., Damjanovich S, Jovin TM. (1995) Immobilization of molecules, membranes and cells for modern optical and non-optical microscopy by photo-crosslinking. J. Photochem. Photobiol. B: Biol., 27, 275–277.CrossRefGoogle Scholar
  15. 15.
    Betzig EA, Lewis A, Harootunian A, Isaacson M, Kratschmer E. (1986) Near-field scanning optical microscopy (NSOM) — development and biophysical applications. Biophys. J., 49, 269–279.PubMedCrossRefGoogle Scholar
  16. 16.
    Pohl DW. (1991) Scanning near-field optical microscopy (SNOM). Adv. Optical Electron Microsc., 12, 243–312.Google Scholar
  17. 17.
    Kirsch A, Meyer C, Jovin TM. (1996) Integration of optical techniques in scanning probe microscopes: the scanning near-field optical microscope (SNOM). In: NATO Advanced Research Workshop: Analytical use of fluorescent probes in oncology (eds. E Kohen, JG Hirschberg). Plenum Press, Miami, FLGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • György Vereb
    • 1
    • 2
  • Christoph K. Meyer
    • 1
  • Thomas M. Jovin
    • 1
  1. 1.Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Department of BiophysicsUniversity Medical School of DebrecenDebrecenHungary

Personalised recommendations