Skip to main content

Novel Microscope-Based Approaches for the Investigation of Protein-Protein Interactions in Signal Transduction

  • Conference paper
Interacting Protein Domains

Part of the book series: NATO ASI Series ((ASIH,volume 102))

Abstract

In addition to the biochemical characterization of interacting proteins, the spatiotemporal localisation in situ or in vivo of the transiently associating participants of a cascade mechanism can greatly enhance our understanding of the given signal transduction process. However, the mere determination of colocalization based on fluorescent tags that are compatible with the in vivo observation does not generally suffice due to the limitation in resolution imposed by optical diffraction in conventional light microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Förster T. (1946) Energiewanderung and Fluoreszenz. Naturwissenschaften, 6, 166–175.

    Article  Google Scholar 

  2. Stryer L, Haugland RP. (1967) Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA, 58, 719–726.

    Article  PubMed  CAS  Google Scholar 

  3. Szöllösi J, Trón L, Damjanovich S, Helliwell SH, Arndt-Jovin D, Jovin TM. (1984) Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry, 5, 210–216.

    Article  PubMed  Google Scholar 

  4. Jovin TM, Arndt-Jovin D. (1989) FRET Microscopy: Digital imaging of fluorescence resonance energy transfer. Application in cell biology. In: Cell Structure and Function by Microspectrofluorometry. (eds. E Kohen, JG Hirschberg). Academic Press, New York.

    Google Scholar 

  5. Jovin TM, Arndt-Jovin DJ. (1989) Luminescence digital imaging microscopy. Arms. Rev. Biophys. Biophys. Chem., 18, 271–308.

    Article  CAS  Google Scholar 

  6. Kubitscheck U, Schweitzer-Sterner R, Arndt-Jovin DJ, Jovin TM, Pecht I. (1993) Distribution of type I Fcε -receptors on the surface of mast cells probed by fluorescence resonance energy transfer. Biophys. J., 64, 110–120.

    Article  PubMed  CAS  Google Scholar 

  7. Damjanovich S, Vereb G, Jr., Schaper A, Jenei A, Matkó J, Std JP, Fox GQ, Arndt-Jovin DJ, Jovin TM. (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA, 92, 1122–6.

    Article  PubMed  CAS  Google Scholar 

  8. Bastiaens PIH, Jovin TM. (1996) FRET microscopy in cellular signal transduction. In: NATO Advanced Research Workshop: Analytical use of fluorescent probes in oncology. (eds. E Kohen, JG Hirschberg). Plenum Press, Miami, FL

    Google Scholar 

  9. Bastiaens PIH, Majoul IV, Verveer PJ, Söling HD, Jovin TM. (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J., 15, 4246–4253.

    PubMed  CAS  Google Scholar 

  10. Bastiaens PIH, Jovin TM. (119N) Fluorescence resonance energy transfer (FRET) microscopy. In: Cell Biology: a Laboratory Handbook, 2nd ed. (ed. JE Cells) Academic Press, San Diego, CA

    Google Scholar 

  11. Binnig G, Quate CF, Gerber C. (1986) Atomic force microscopy. Phys. Rev. Lett., 56, 930–933.

    Article  Google Scholar 

  12. Hoh JH, Hansma PK. (1992) Atomic force microscopy for high-resolution imaging in cell biology. Trends Cell. Biol., 2, 208–213.

    CAS  Google Scholar 

  13. Matkó J, Bushkin Y, Wei T, Edidin M. (1994) Clustering of class I MHC molecules on the surfaces of activated and transformed human cells. J. Immunol., 152, 3355–3360.

    Google Scholar 

  14. Vereb G, Jr., Damjanovich S, Jovin TM. (1995) Immobilization of molecules, membranes and cells for modern optical and non-optical microscopy by photo-crosslinking. J. Photochem. Photobiol. B: Biol., 27, 275–277.

    Article  CAS  Google Scholar 

  15. Betzig EA, Lewis A, Harootunian A, Isaacson M, Kratschmer E. (1986) Near-field scanning optical microscopy (NSOM) — development and biophysical applications. Biophys. J., 49, 269–279.

    Article  PubMed  CAS  Google Scholar 

  16. Pohl DW. (1991) Scanning near-field optical microscopy (SNOM). Adv. Optical Electron Microsc., 12, 243–312.

    Google Scholar 

  17. Kirsch A, Meyer C, Jovin TM. (1996) Integration of optical techniques in scanning probe microscopes: the scanning near-field optical microscope (SNOM). In: NATO Advanced Research Workshop: Analytical use of fluorescent probes in oncology (eds. E Kohen, JG Hirschberg). Plenum Press, Miami, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vereb, G., Meyer, C.K., Jovin, T.M. (1997). Novel Microscope-Based Approaches for the Investigation of Protein-Protein Interactions in Signal Transduction. In: Heilmeyer, L. (eds) Interacting Protein Domains. NATO ASI Series, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60848-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60848-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64583-9

  • Online ISBN: 978-3-642-60848-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics