Skip to main content

G protein coupled receptors: structure, functions and mutation

  • Conference paper
Molecular Mechanisms of Signalling and Membrane Transport

Part of the book series: NATO ASI Series ((ASIH,volume 101))

  • 105 Accesses

Abstract

The evolution of multicellular organisms has been conditioned by the capacity of their cells to communicate in order to coordinate their cell division, their cellular differentiation, their embryonic development as well as their different physiological functions. The messages used for cellular communication are hormones, neurotransmitters, growth and differentiation factors, cytokines, chemokines. The receptors for these messages as well as receptors for messages of the environment such as odors, light, tasteful molecules are, in most cases, membrane-bound molecules with steroid and thyroid hormone receptors as the important exception. During the last 10 years, purification and cloning of most of these receptors have revealed that they belong to a small number of protein families characterized by their structure and their functions. These families include: 1) receptor which are channels, such as the nicotinic receptor; 2) receptors which are enzymes such as the tyrosine kinases (insulin, EGF, PDGF receptors), the guanylate cyclase receptors (atrial natriuretic factor receptors), or serine/threonine kinases (TGF-β receptors); 3) receptors for cytokines (Il2,Il3,GH, prolactin, interferon) which activate separate tyrosine kinases (Jak and fyn kinases); 4) GTP binding protein (G proteins) coupled receptors (GPCRs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, E. L., R. S. Westphal, et al. (1994) Constitutively active 5-hydroxytryptamine2c receptors reveal novel inverse agonist activity of receptor ligands. J. Biol. Chem. 269:11687–11690.

    PubMed  CAS  Google Scholar 

  • Bockaert, J. (1991) G proteins and G-protein-coupled receptors: structure, function and interactions. Curr. Opin. Neurobiol. 1:32–42.

    Article  PubMed  CAS  Google Scholar 

  • Bockaert, J. (1995) Les récepteurs à sept domaines transmembranaires: physiologie et pathologie de la transduction. médecine/science 11:382–394.

    Google Scholar 

  • Boguski, M. S. and F. McCormick (1993) Proteins regulating ras and its relatives. Nature 366:643–654.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E. M., G. Gamba, et al. (1993) Cloning and characterization of an extracellular Ca++-sensing receptor from bovine parathyroid. Nature 366:575–580.

    Article  PubMed  CAS  Google Scholar 

  • Buck, L. and R. Axel (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Chabre, M. and P. Deterre (1989) Molecular mechanism of visual transduction. Eur. J. Biochem. 179:255–256.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin, S. R. (1994) Expanding horizons for receptors coupled to G proteins: diversity and disease. Curr. Opin. Biol. 6:191–197.

    Article  CAS  Google Scholar 

  • Crespo, P., N. Xu, et al. (1994) Ras-dependent activation of MAP kinase pathway mediated by G-protein βγ subunits. Nature 369:418–420.

    Article  PubMed  CAS  Google Scholar 

  • Dohlman, H. G., J. Thorner, et al. (1991) Model systems for the study of seventransmembrane-segment receptors. Annu. Rev. Biochem. 60:653–688.

    Article  PubMed  CAS  Google Scholar 

  • Faure, M., T. A. Voyno-Yasenetskaya, et al. (1994) cAMP and bg subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathways in COS-7 cells. J. Biol. Chem. 269:7851–7854.

    PubMed  CAS  Google Scholar 

  • Fong, T. M., R. R. C. Huang, et al. (1992) The extracellular domain of the neurokinin-1 receptor is required for high-affinity binding of peptides. Biochemistry 31:11806–11811.

    Article  PubMed  CAS  Google Scholar 

  • Gerszten, R. E., J. I. Chen, et al. (1994) Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature 368:648–651.

    Article  PubMed  CAS  Google Scholar 

  • Gether, U., T. E. Johansen, et al. (1993) Different binding epitopes on the NK1 receptor for substance P and a non-peptide antagonist. Nature 362:345–348.

    Article  PubMed  CAS  Google Scholar 

  • Gomeza, J., C. Joly, et al. (1995) The second intracellular loop cooperates with the other intracellular domains to control coupling to G-proteins. J. Biol. Chem. 271:2199–2205.

    Google Scholar 

  • Götze, K. and K. H. Jakobs (1994) Unoccupied β-adrenoceptor-induced adenylyl cyclase stimulation in turkey erythrocyte membranes. Eur. J. Pharmacol. 268:151–158.

    Article  PubMed  Google Scholar 

  • Hibert, M. F., J. Hoflack, et al. (1993) Modèies tridimentionnels des récepteurs couplés aux proteines G. médecine/sciences 9:31–40.

    Google Scholar 

  • Houssami, S., D. M. Findlay, et al. (1994) Isoforms of the rat calcitonin receptor: consequences for ligand biding and signal transduction. Endocrinology 135:183–190.

    Article  PubMed  CAS  Google Scholar 

  • Ji, I. and T. H. Ji (1995) Differential roles of exoloop 1 of the human follicle-stimulating hormone in hormone binding and receptor activation. J. Biol.Chem. 270:15970–15973

    Article  PubMed  CAS  Google Scholar 

  • Kjelsberg, M. A., S. Cotecchia, et al. (1992) Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site. J. Biol. Chem. 267:1430–1433.

    PubMed  CAS  Google Scholar 

  • Kolesnikov, S. S. and R. F. Margolskee (1995) A cyclic-nucleotide-suppressible conductance activated by transducin in taste cells. Nature 376:85–88.

    Article  PubMed  CAS  Google Scholar 

  • Kuusinen, A., M. Arvola, et al. (1995) Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J. 14:6327–6332.

    PubMed  CAS  Google Scholar 

  • Kyte, J. and R. F. Doolittle (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lancet, D. and N. Ben-Arie (1993) Olfactory receptors. Current Biology 3:668–674.

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz, R. J. and M. G. Caron (1988) Adrenergic receptors. Models for the study of receptors coupled to guanine nucleotide regulatory proteins. J. Biol. Chem. 263:4993–4996.

    PubMed  CAS  Google Scholar 

  • Llédo, P., V. Homburger, et al. (1992) Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Ca++ channels in rat anterior pituitary cells. Neuron 8:455–463.

    Article  PubMed  Google Scholar 

  • Maggio, R., Z. Vogel, et al. (1993) Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular cross-talk between G-protein-linked receptors. Proc. Natl. Acad. Sci., USA 90:3103–3107.

    Article  PubMed  CAS  Google Scholar 

  • Mollon, J. (1992) Colour vision. Worlds of difference. Nature 356:378–379.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603.

    Article  PubMed  CAS  Google Scholar 

  • Neer, E. J. (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80:249–257.

    Article  PubMed  CAS  Google Scholar 

  • Nystedt, S., K. Emilsson, et al. (1994) Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA 91:9208–9212.

    Article  PubMed  CAS  Google Scholar 

  • O’Hara, P. J., P. O. Sheppard, et al. (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11:41–52.

    Article  PubMed  Google Scholar 

  • Offermanns, S. and M. I. Simon (1995) Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem. 270:15175–15180.

    Article  PubMed  CAS  Google Scholar 

  • Oliviera, L., A. C. M. Paiva, et al. (1994) A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol. Sci. 15:170–172.

    Article  Google Scholar 

  • Pantaloni, C., P. Brabet, et al. (1996) Alternative splicing in the N-terminal extracellular domain of the PACAP receptor modulates receptor selectivity and relative potency of PACAP-27 and-38 in phospholipase C activation. J. Biol. Chem. in press

    Google Scholar 

  • Parma, J., L. Duprez, et al. (1993) Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenoma. Nature 365:649–651.

    Article  PubMed  CAS  Google Scholar 

  • Pin, J. P. and J. Bockaert (1995) Get receptive to metabotropic glutamate receptors. Current opinion in Neurobiology 5:342–349.

    Article  PubMed  CAS  Google Scholar 

  • Pin, J. P., C. Joly, et al. (1994) Domains involved in the specificity of G-protein activation in phospholipase C coupled metabotropic glutamate receptors. EMBO J. IN PRESS

    Google Scholar 

  • Pollak, M. R., E. M. Brown, et al. (1993) Mutations in the human Ca++-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75:1297–1303.

    Article  PubMed  CAS  Google Scholar 

  • Pradier, L., J. Menager, et al. (1994) Septide: an agonist for the NK1 receptor acting at a site distinct from substance P. Mol. Pharmacol. 45:287–293.

    PubMed  CAS  Google Scholar 

  • Schertler, G. F. X., C. Villa, et al. (1993) Projection structure of rhodopsin. Nature 362:770–772.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, A. M., L. S. Weinstein, et al. (1993) Abnormalities in G protein-coupled signal transduction pathways in human disease. J. Clin. Invest. 92:1119–1125.

    Article  PubMed  CAS  Google Scholar 

  • Stern-Bach, Y., B. Bettler, et al. (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13:1345–1357.

    Article  PubMed  CAS  Google Scholar 

  • Stroop, S. D., R. E. Kuestner, et al. (1995) Biochemistry 34:183–190.

    Article  Google Scholar 

  • Suryanarayana, S., M. von Zastrow, et al. (1992) Identification of intramolecular interactions in adrenergic receptors. J. Biol. Chem. 267:21991–21994.

    PubMed  CAS  Google Scholar 

  • Tang, W. and G. A.G. (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503.

    Google Scholar 

  • Thirstrup, K., C. E. Elling, et al. (1996) Construction of a high affinity zinc switch in k-opioid receptor. J. Biol. Chem. 271:7875–7878.

    Article  PubMed  CAS  Google Scholar 

  • Tota, M. R. and C. D. Strader (1990) Characterization of the binding domain of β-adrenergic receptor with the fluorescent antagonist Carazolol. Evidence for a buried ligand binding site. J. Biol. Chem. 26:16891–16897.

    Google Scholar 

  • Trumpp-Kallmeyer, S., B. Chini, et al. (1995) Towards understanding the role of the first extracellular loop for the binding of peptide hormones to G-protein coupled receptors. Pharmaceutica Acta Helvetiae 70:255–262.

    Article  PubMed  CAS  Google Scholar 

  • Turner, P. R., T. Bambino, et al. (1996) A putative selectivity filter in the G-protein-coupled receptors for parathyroid hormone and secretin. J. Biol. Chem. 271:9205–9208.

    Article  PubMed  CAS  Google Scholar 

  • Van Sande, J., J. Parma, et al. (1995) Genetic basis of endocrine disease. Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J. Clin. Endocr. and Metabolism. 80:2577–2585.

    Article  Google Scholar 

  • Varrault, A., J. Bockaert, et al. (1992) Activation of 5-HT receptors expressed in NIH-3T3 cells induces focus formation and potentiates EGF effect on DNA synthesis. Mol. Biol. Cell 3:961–969.

    PubMed  CAS  Google Scholar 

  • Varrault, A., D. Le Nguyen, et al. (1994) 5-Hydroxytryptamine1A receptor synthetic peptides. Mechanisms of adenylyl cyclase. J. Biol. Chem. 269:16720–16725.

    PubMed  CAS  Google Scholar 

  • Vu, T.-K., H, D. T. Hung, et al. (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068.

    Article  PubMed  CAS  Google Scholar 

  • Wedegaertner, P. B., P. T. Wilson, et al. (1995) Lipid modifications of trimeric G proteins. J. Biol. Chem. 270:503–506.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W., C. Flanagan, et al. (1994) A reciprocal mutation supports helix 2 and helix 7 proximity in gonodotropin-releasing hormone receptor. Mol. Pharmacol. 45:165–170.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bockaert, J. (1997). G protein coupled receptors: structure, functions and mutation. In: Wirtz, K.W.A. (eds) Molecular Mechanisms of Signalling and Membrane Transport. NATO ASI Series, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60799-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60799-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64559-4

  • Online ISBN: 978-3-642-60799-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics