Skip to main content

Receptor Regulation of Phospholipases C and D

  • Conference paper
  • 101 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 101))

Abstract

A large variety of hormones, neurotransmitters and growth factors regulate cellular functions by stimulating phospholipase C (PLC) enzymes (Berridge, 1993; Divecha & Irvine, 1995; Exton, 1996). These phospholipases hydrolyze phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], a rare and uniquely polar plasma membrane phospholipid, generating the two second messengers, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol. InsP3 exerts its effect by binding to specific receptors located on components of the endoplasmatic reticulum, thereby leading to a quantal release of calcium (Clapham, 1995). The accumulation of diacylglycerol in the plasma membrane due to the hydrolysis of PtdIns(4,5)P2 induces the translocation of certain protein kinase C (PKC) isozymes from the cytosol to the membrane and their concurrent activation (Nishizuka, 1995). The classical or conventional PKC isozymes (α, βl, β2, and γ) possess C1 and C2 domains, binding diacylglycerol or phorbol ester and calcium, respectively, and are thus calcium-dependent, whereas the other isoforms (δ, ε, η, θ) lack the C2 domain and are therefore calcium-independent. The atypical PKC isozymes ζ and λ are not only calcium-independent, but also diacylglycerol- or phorbol esterindependent, due to deletions or differences in the C1 domain. However, these enzymes are still dependent upon phosphatidylserine and are activated by other lipids (Nishizuka, 1995). The increase in cytoplasmic calcium and activation of different PKC isozymes initiated by PLC-catalyzed hydrolysis of PtdIns(4,5)P2 apparently participate in the transduction of mitogenic signals across the plasma membrane into the nucleus leading to cell growth and cell transformation (Berridge, 1993; Nishizuka, 1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Phospholipase C

  • Banno Y, Okano Y, Nozawa Y (1994) Thrombin-mediated phosphoinositide hydrolysis in Chinese Hamster Ovary cells overexpressing phospholipase C-δ1. J Biol Chem 269:15846–15852

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  • Berstein G, Blank JL, Smrcka AV, Higashijima T, Stern weis PC, Exton JH, Ross EM (1992) Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified ml muscarinic receptor, Gq/11, and phospholipase C-β1. J Biol Chem 267:8081–8088

    PubMed  CAS  Google Scholar 

  • Camps M, Carozzi A, Schnabel P, Scheer P, Parker PJ, Gierschik P (1992) Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ subunits. Nature 360:684–686

    Article  PubMed  CAS  Google Scholar 

  • Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr Opinion Cell Biol 8:153–158

    Article  PubMed  CAS  Google Scholar 

  • Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79:507–513

    Article  PubMed  CAS  Google Scholar 

  • Claesson-Welsh L (1994) Platelet-derived growth factor receptor signals. J Biol Chem 269:32023–32026

    PubMed  CAS  Google Scholar 

  • Clapham DE (1995) Calcium signaling. Cell 80: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Cunningham E, Thomas GMH, Ball A, Hiles I, Cockcroft S (1995) Phosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting the synthesis of PIP2. Curr Biol 5:775–783

    Article  PubMed  CAS  Google Scholar 

  • Divecha N, Irvine RF (1995) Phospholipid signaling. Cell 80:269–278

    Article  PubMed  CAS  Google Scholar 

  • Essen LO, Perisic O, Cheung R, Katan M, Williams RL (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ. Nature 380:595–602

    Article  PubMed  CAS  Google Scholar 

  • Exton JH (1996) Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol 36:481–509

    Article  PubMed  CAS  Google Scholar 

  • Feng JF, Rhee SG, Im, MJ (1996) Evidence that phospholipase δ1 is the effector in the Gh (transglutaminase II)-mediated signaling. J Biol Chem 271:16451–16454

    Article  PubMed  CAS  Google Scholar 

  • Hamm HE, Gilchrist A (1996) Heterotrimeric G proteins. Curr Opinion Cell Biol 8:189–196

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP (1995) Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643–653

    Article  PubMed  CAS  Google Scholar 

  • Katz A, Wu D, Simon MI (1992) Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature 360:686–689

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann-Zeh A, Thomas GMH, Ball A, Prosser S, Cunningham E, Cockcroft S, Hsuan, JJ (1995) Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling. Science 268:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherübl H, Hescheler J, Schultz G, Wittig B (1992) Different β-subunits determine G-protein interaction with transmembrane receptors. Nature 358:424–426

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherübl H, Hescheler J, Schultz G, Wittig B (1993) Selectivity of signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259:832–834

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Rhee, SG (1995) Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opinion Cell Biol 7:183–189

    Article  PubMed  CAS  Google Scholar 

  • Lods JS, Rossignol B, Dreux C, Morisset J (1995) Phosphoinositide synthesis in desensitized rat pancreatic acinar cells. Am J Physiol 95:G1043–G1050

    Google Scholar 

  • Marrero MB, Schieffer B, Ma H, Bernstein KE, Ling BN (1996) ANG II-induced tyrosine phosphorylation stimulates phospholipase C-γ1 and CI- channels in mesangial cells. Am J Physiol 270:C1834–C1842

    PubMed  CAS  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    PubMed  CAS  Google Scholar 

  • Rhee SG, Choi, KD (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267:12393–12396

    PubMed  CAS  Google Scholar 

  • Schmidt M, Fasselt B, Rümenapp U, Bienek C, Wieland T, van Koppen CJ, Jakobs KH (1995) Rapid and persistent desensitization of m3 muscarinic acetylcholine receptorstimulated phospholipase D. Concomitant sensitization of phospholipase C. J Biol Chem 270:19949–19956

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Bienek C, Rümenapp U, Zhang C, Lümmen G, Jakobs KH, Just I, Aktories K, Moos M, von Eichel-Streiber C (1996a) A role for Rho in receptor-and G proteinstimulated phospholipase C. Reduction in phosphatidylinositol 4,5-bisphosphate by Clostridium difficile toxin B. Naunyn-Schmiedeberg’s Arch Pharmacol 353:1–8

    Article  Google Scholar 

  • Schmidt M, Nehls C, Rümenapp U, Jakobs KH (1996b) m3 Muscarinic receptor-induced and Gi protein-mediated heterologous potentiation of phospholipase C stimulation: Role of phosphoinositide synthesis. Mol Pharmacol: in press

    Google Scholar 

  • Stephens L, Jackson TR, Hawkins PT (1993) Activation of phosphatidylinositol 4,5-bisphosphate supply by agonists and non-hydrolysable GTP analogues. Biochem J 296:481–488

    PubMed  CAS  Google Scholar 

  • Thomas GMH, Cunningham E, Fensome A, Ball A, Totty NF, Truong O, Hsuan JJ, Cockcroft S (1993) An essential role for phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signaling. Cell 74:919–928

    Article  PubMed  CAS  Google Scholar 

  • Tolias KF, Cantley LC, Carpenter CL (1995) Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 270:17665–17659

    Google Scholar 

  • Ueda N, Iñiguez-Lluhi JA, Lee E, Smrcka AV, Robishaw, JD, Gilman AG (1994) G proteins βγ subunits. Simplified purification and properties of novel isoforms. J Biol Chem 269:4388–4395

    PubMed  CAS  Google Scholar 

  • Watson AJ, Katz A, Simon MI (1994) A fifth member of the mammalian G protein β-subunit family. Expression in brain and activation of the β2 isotype of phospholipase C. J Biol Chem 269:22150–22156

    PubMed  CAS  Google Scholar 

  • Wu L, Niemeyer B, Colley N, Socolich M, Zuker CS (1995) Regulation of PLC-mediated signalling in vivo by CDP-diacylglycerol synthase. Nature 373:216–222

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Baffy G, Rhee SG, Manning D, Hansen CA, Williamson, JR (1991) Pertussis toxinsensitive Gi protein involvement in epidermal growth factor-induced activation of phospholipase-γ in rat hepatocytes J Biol Chem 266:22451–22458

    PubMed  CAS  Google Scholar 

  • Zhang C, Schmidt M, von Eichel-Streiber C, Jakobs KH (1996) Inhibition by toxin B of inositol phosphate formation induced by G protein-coupled and tyrosine kinase receptors in N1E-115 neuroblastoma cells: Involvement of Rho proteins. Mol. Pharmacol: in press

    Google Scholar 

Phospholipase D

  • Balboa MA, Insel PA (1995) Nuclear phospholipase D in Madin-Darby canine kidney cells. Guanosine 5′-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and downstream of protein kinase C. J Biol Chem 270:29843–29847

    Article  PubMed  CAS  Google Scholar 

  • Billah MB (1993) Phospholipase D and cell signaling. Curr Opinion Immunol 5:114–123

    Article  CAS  Google Scholar 

  • Boarder MR (1994) A role for phospholipase D in control of mitogenesis. TiPS 15:57–62

    PubMed  CAS  Google Scholar 

  • Bowman EP, Uhlinger DJ, Lambeth JD (1993) Neutrophil phospholipase D is activated by a membrane-associated Rho family small molecular weight GTP-binding protein. J Biol Chem 268:21509–21512

    PubMed  CAS  Google Scholar 

  • Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein stimulates phospholipase D activity. Cell 75:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Brown HA, Gutowski S, Kahn RA, Sternweis PC (1995) Partial purification and characterization of ARF-sensitive phospholipase D from porcine brain. J Biol Chem 270:14935–14943

    Article  PubMed  CAS  Google Scholar 

  • Chant J, Stowers L (1995) GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81:1–4

    Article  PubMed  CAS  Google Scholar 

  • Chuang TH, Bohl BP, Bokoch GM (1993) Biologically active lipids are regulators of Rac GDI complexation. J Biol Chem 268:26206–26211

    PubMed  CAS  Google Scholar 

  • Cockcroft S (1992) G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta 1113:135–160

    PubMed  CAS  Google Scholar 

  • Cockcroft S, Thomas GMH, Fensome A, Geny B, Cunningham E, Gout I, Hiles I, Totty NF, Truong O, Hsuan JJ (1994) Phospholipase D: A downstream effector of ARF in granulocytes. Science 263:523–526

    Article  PubMed  CAS  Google Scholar 

  • Conricode K, Brewer KA, Exton JH (1992) Activation of phospholipase D by protein kinase C. Evidence for a phosphorylation-independent mechanism. J Biol Chem 267:7199–7202

    PubMed  CAS  Google Scholar 

  • Cook SJ, Wakelam MJ (1992) Epidermal growth factor increases sn-1,2-diacylglycerol levels and activates phospholipase D-catalyzed phosphatidylcholine breakdown in Swiss 3T3 cells in the absence of inositol-lipid hydrolysis. Biochem J 285:247–253

    PubMed  CAS  Google Scholar 

  • Cross MJ, Roberts S, Ridley AJ, Hodgkin MN, Stewart A, Claesson-Welsh L, Wakelam MJO (1996) Stimulation of actin fibre formation mediated by activation of phospholipase D. Curr Biol 6:588–597

    Article  PubMed  CAS  Google Scholar 

  • Dubyak GR, Schomisch SJ, Kusner DJ, Xie M (1993) Phospholipase D activity in phagocytic leucocytes is synergistically regulated by G-protein and tyrosine kinase-based mechanism. Biochem J 292:121–128

    PubMed  CAS  Google Scholar 

  • Exton JH (1994) Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta 212:26–42

    Google Scholar 

  • Ghosh S, Strum JC, Sciorra VA, Daniel L, Bell RM (1996) Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J Biol Chem 271:8472–8480

    Article  PubMed  CAS  Google Scholar 

  • Ha KS, Exton JH (1993a) Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine in IIC9 fibroblasts. J Cell Biol 123:1789–1796

    Article  PubMed  CAS  Google Scholar 

  • Ha KS, Exton JH (1993b) Differential translocation of protein kinase C isozymes by thrombin and platelet-derived growth factor. A possible function for phosphatidylcholine-derived diacylglycerol. J Biol Chem 268:10534–10539

    PubMed  CAS  Google Scholar 

  • Hammond, SM, Altshuller YM, Sung TC, Rudge SA, Rose K, Engebrecht J, Morris AJ, Frohman MA (1995) Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270: 29640–29643

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GH, Fisette PL, Anderson RA (1994) Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 269:11547–11554

    PubMed  CAS  Google Scholar 

  • Jiang H, Luo JQ, Urano T, Frankel P, Lu Z, Foster DA, Feig LA (1995) Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 378:409–412

    Article  PubMed  CAS  Google Scholar 

  • Ktistakis NT, Brown HA, Sternweis PC, Roth MG (1995) Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc Natl Acad Sci USA 92:4952–4956

    Article  PubMed  CAS  Google Scholar 

  • Kuribara H, Tago K, Yokozeki T, Sasaki T, Morii N, Narumiya S, Katada T, Kanaho Y (1995) Synergistic activation of rat brain phospholipase D by ADP-ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J Biol Chem 270:25667–25671

    Article  PubMed  CAS  Google Scholar 

  • Kwak JY, Lopez I, Uhlinger DJ, Ryu SH, Lambeth JD (1995) RhoA and a cytosolic 50-kDa factor reconstitute GTPγS-dependent phospholipase D activity in human neutrophil subcellular fractions. J Biol Chem 270:27093–27098

    Article  PubMed  CAS  Google Scholar 

  • Lambeth JD, Kwak JY, Bowman EP, Perry D, Uhlinger DJ, Lopez I (1995) ADP-ribosylation factor functions synergistically with a 50-kDa factor in cell-free activation of human neutrophil phospholipase D. J Biol Chem 270:2431–2434

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Kim HS, Pai JK, Ryu SH, Suh PG (1994) Activation of phospholipase D induced by platelet-derived growth factor is dependent upon the level of phospholipase C-γ1. J Biol Chem 269:26842–26847

    PubMed  CAS  Google Scholar 

  • Liscovitch M, Cantley LC (1995) Signal transduction and membrane traffic: the PITP/phosphoinositide connection. Cell 81:659–662

    Article  PubMed  CAS  Google Scholar 

  • Liscovitch M, Chalifa V, Pertile P, Chen CS, Cantley LC (1994) Novel function of phosphatidylinositol 4,5-bisphophate as a cofactor for brain membrane phospholipase D. J. Biol. Chem. 269:21403–21406

    PubMed  CAS  Google Scholar 

  • Lopez I, Burns DJ, Lambeth JD (1995) Regulation of phospholipase D by protein kinase C in human neutrophils. Conventional isoforms of protein kinase C phosphorylate a phospholipase D-related component in the plasma membrane. J Biol Chem 270:19465–19472

    Article  PubMed  CAS  Google Scholar 

  • Malcolm KC, Ross AH, Qui RG, Symons, M., Exton JH (1994) Activation of rat liver phospholipase D by the small molecular GTP-binding protein RhoA. J Biol Chem 259:25951–25954

    Google Scholar 

  • Massenburg D, Han JS, Liyanage M, Patton WA, Rhee SG, Moss J, Vaughan M (1994) Activation of rat brain phospholipase D by ADP-ribosylation factors 1, 5, and 6: Separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proc Natl Acad Sci USA 91:11718–11722

    Article  PubMed  CAS  Google Scholar 

  • Moritz A, De Graan PNE, Gispen WH, Wirtz KWA (1992) Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem 267:7207–7210

    PubMed  CAS  Google Scholar 

  • Morris AJ, Engebrecht JA, Frohman MA (1996) Structure and regulation of phospholipase D. Trends Pharmacol Sci 17:182–185

    Article  PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  PubMed  CAS  Google Scholar 

  • Offermanns S, Wieland T, Homann D, Sandmann J, Bombien E, Spicher E, Schultz G, Jakobs KH (1994) Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11. Mol Pharmacol 45:890–898

    PubMed  CAS  Google Scholar 

  • Pertile P, Liscovitch M, Chalifa C, Cantley LC (1995) Phosphatidylinositol 4,5-bisphosphate synthesis is required for activation of phospholipase D in U937 cells. J Biol Chem 270:5130–5135

    Article  PubMed  CAS  Google Scholar 

  • Randazzo PA, Kahn RA (1994) GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids. J Biol Chem 269:10758–10763

    PubMed  CAS  Google Scholar 

  • Rümenapp U, Geiszt M, Wahn F, Schmidt M, Jakobs KH (1995) Evidence for ADP-ribosylation-factor-mediated activation of phospholipase D by m3 muscarinic acetylcholine receptor. Eur J Biochem 234:240–244

    Article  PubMed  Google Scholar 

  • Schmidt M, Hüwe SM, Fasselt B, Homann D, Rümenapp U, Sandmann J, Jakobs KH (1994) Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Evidence for involvement of tyrosine phosphorylation. Eur J Biochem 225:667–675

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Rümenapp U, Bienek C, Keller J, von Eichel-Streiber C, Jakobs KH (1996a) Inhibition of receptor signaling to phospholipase D by Clostridium difficile toxin B. Role of Rho proteins. J Biol Chem 271:2422–2426

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Rümenapp U, Nehls C, Ott S, Keller J, von Eichel-Streiber C, Jakobs KH (1996b) Restoration of Clostridium difficile toxin B-inhibited phospholipase D by phosphatidylinositol 4,5-bisphosphate. Eur J Biochem: in press

    Google Scholar 

  • Siddiqi AR, Smith JL, Ross AH, Qui RG, Symons M, Exton JH (1995) Regulation of phospholipase D in HL-60 cells. Evidence for a cytosolic phospholipase D. J Biol Chem 270:8466–8473

    Article  PubMed  CAS  Google Scholar 

  • Singer WD, Brown A, Bokoch GM, Sternweis PC (1995) Resolved phospholipase D activity is modulated by cytosolic factors other than ARF. J Biol Chem 270:14944–14950

    Article  PubMed  CAS  Google Scholar 

  • Singer WA, Brown HA, Jiang X, Sternweis PC (1996) Regulation of phospholipase D by protein kinase C is synergistic with ADP-ribosylation factor and independent of protein kinase activity. J Biol Chem 271:4504–4510

    Article  PubMed  CAS  Google Scholar 

  • Uings IJ, Thompson NT, Randall RW, Spacey GD, Bonser RW, Hudson AT, Garland LG (1992) Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem J 281:597–600

    PubMed  CAS  Google Scholar 

  • Waksman M, Eli, Y., Liscovitch M, Gerst JE (1996) Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem 271:2361–2364

    Article  PubMed  CAS  Google Scholar 

  • Ward DT, Ohanian J, Heagerty AM, Ohanian V (1995) Phospholipase D-induced phosphatidate production in intact small arteries during noradrenaline stimulation: involvement of both G-protein and tyrosine-phosphorylation-linked pathways. Biochem J 307:451–456

    PubMed  CAS  Google Scholar 

  • Yeo EJ, Kazlauskas A, Exton JH (1994) Activation of phospholipase C-γ is necessary for stimulation of phospholipase D by platelet-derived growth factor. J Biol Chem 269:27823–27826

    PubMed  CAS  Google Scholar 

  • Yeo EJ, Exton JH (1995) Stimulation of phospholipase D by epidermal growth factor requires protein kinase C activation in Swiss 3T3 cells. J Biol Chem 270:3980–3988

    Article  PubMed  CAS  Google Scholar 

  • Yokozeki T, Kuribara H, Katada T, Touhara K, Kanaho Y (1996) Partially purified RhoA-stimulated phospholipase D activity specifically binds to phosphatidylinositol 4,5-bisphosphate. J Neurochem 66:1234–1239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, M., Rümenapp, U., Zhang, C., Keller, J., Lohmann, B., Jakobs, K.H. (1997). Receptor Regulation of Phospholipases C and D. In: Wirtz, K.W.A. (eds) Molecular Mechanisms of Signalling and Membrane Transport. NATO ASI Series, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60799-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60799-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64559-4

  • Online ISBN: 978-3-642-60799-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics