UV-Expert: A Spectroradiometric System for Individual UV Dosimetry

  • I. Stocks
  • M. Chen
  • H. Kaase
  • W. Lechner
Conference paper


The progressive depletion of the stratospheric ozone layer and increasing incidences of actinic skin malignancies have raised higher interest in detailed measurements of environmental UV radiation (UVR). Several UV-monitoring projects have been initiated around the world to record changes in quantity as well as quality of solar UVR reaching the Earth’s surface. However, in order to assess the photobiological impacts on human health individual doses of UVR have to be quantified and besides photocarcinogenesis other effects like modulation of immunological processes, production of vitamin D3, induction of acute and chronic photodermatoses, antidepressive effects and therapeutical application of UVR for various dermatoses have to be taken under consideration as well [8]. All available devices for individual UV dosimetry focus on the UVB range and although the peak response of most of the known action spectra is in this spectral range, the biological effectiveness of UVA radiation not only in terms of photosensitation and photoaging has been clearly demonstrated and thus may not be neglected. Therefore instrumentation for the determination of individual solar irradiance is required that covers the complete UV range and takes various photobiological response functions under consideration.


Solar Irradiance Action Spectrum Global Irradiance Spore Photoproduct Spectroradiometric Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger DS (1976) The sunburning ultraviolet meter: design and performance. Photochem Photobiol 24: 587–593PubMedCrossRefGoogle Scholar
  2. 2.
    Berger DS, Urbach F (1982) A climatology of sunburning ultraviolet radiation. Photochem Photobiol 35: 187–196PubMedCrossRefGoogle Scholar
  3. 3.
    Blumthaler M and Ambach W (1990) Indication of increasing solar ultraviolet-B radiation flux in the alpine regions. Science 248: 206–207PubMedCrossRefGoogle Scholar
  4. 4.
    Chen M (1994) Spektrale Sonnenbestrahlungsstärke: Messungen, Modellrechnungen, akti- nische Bewertung. Verlag Köster, BerlinGoogle Scholar
  5. 5.
    CIE Technical Committee Report Pub No. 98 (1992) Personal dosimetry of UV radiationGoogle Scholar
  6. 6.
    Davis A, Deane GHW, Diffey BL (1976) Possible dosimeter for ultraviolet radiation. Nature 261:169–170PubMedCrossRefGoogle Scholar
  7. 7.
    Diffey BL (1989) Ultraviolet radiation dosimetry with Polysulphone film. In: Radiation measurement in photobiology. Academic Press Ltd. New York London, pp 136–159Google Scholar
  8. 8.
    Diffey BL (1991) Solar ultraviolet radiation effects on biological systems. Phys Med Biol 36: 299–328PubMedCrossRefGoogle Scholar
  9. 9.
    Diffey BL, Saunders PJ (1995) Behaviour outdoors and its effects on personal ultraviolet exposure rate measured using an ambulatory datalogging dosimeter. Photochem Photobiol 61: 615–618PubMedCrossRefGoogle Scholar
  10. 10.
    Freeman SE, Hacham H, Gange RW, May tum RJ, Sutherland JC, Sutherland BM (1989) Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci USA 86: 5605–5609PubMedCrossRefGoogle Scholar
  11. 11.
    de Gruijl FR, Sterenborg HJCM, Forbes PD, Davies RE, Cole C, Kelfken G, van Weelden H, Slaper H, van der Leun JC (1993) Wavelength dependence of skin cancer induction by ultraviolet radiation of albino hairless mice. Cancer Res 53: 53–60PubMedGoogle Scholar
  12. 12.
    Herlihy E, Gies PH, Colin RR, Jones M (1994) Personal dosimetry of solar UV radiation for different outdoor activities. Photochem Photobiol 60: 288–294PubMedCrossRefGoogle Scholar
  13. 13.
    Holick MF (1985) Photobiology of Vitamin D. In: The medical and biological effects of light. The New York Academy of Science New York pp 1–13Google Scholar
  14. 14.
    Horneck G (1995) Quantification of the biological effectiveness of environmental UV radiation. J Photochem Photobiol B 31: 43–49CrossRefGoogle Scholar
  15. 15.
    Kaase H (1994) Ozon layer depletion. In: Biologic effects of light. Walter de Gruyter Berlin New York, pp 472–484Google Scholar
  16. 16.
    Kaase H, Chen M (1993) Spektrale Messungen der UV-Solarstrahlung: Genaue Bestimmung der Ozon-Schichtdicke und des Strahlenrisikos für den Menschen. Forschung Aktuell 42: 23–27Google Scholar
  17. 17.
    Kaase H, Metzdorf J, Berger H (1988) Standards for UV instruments and risk of existing devices. Photochem Photobiol 48: 439–443PubMedCrossRefGoogle Scholar
  18. 18.
    Kollias N, Bager AH, Sadiq I (1988) Measurements of the solar middle ultraviolet radiation in a desert environment. Photochem Photobiol 47: 565–569PubMedCrossRefGoogle Scholar
  19. 19.
    Lindberg C, Horneck G (1991) Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short-wavelength (200–300 nm) at atmospheric pressure and in vacuo. J Photochem Photobiol B: Biol 11: 69–80CrossRefGoogle Scholar
  20. 20.
    Madronich S, de Gruijl FR (1994) Stratospheric ozone depletion between 1979 and 1992: implications for biologically active ultraviolet-B radiation and non-melanoma skin cancer incidence. Photochem Photobiol 59: 541–546PubMedCrossRefGoogle Scholar
  21. 21.
    McKinley AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in human skin. CIE J 6: 17–22Google Scholar
  22. 22.
    Munakata N (1981) Killing and mutagenic action of sunlight upon Bacillus subtilis spores: a dosimetric system. Mutat Res 82: 263–266PubMedCrossRefGoogle Scholar
  23. 23.
    Munakata N (1993) Biologically effective dose of solar ultraviolet radiation estimated by spore dosimetry in Tokyo since 1980. Photochem Photobiol 58: 386–392PubMedCrossRefGoogle Scholar
  24. 24.
    Munakata N, Saito M, Hieda K (1991) Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelenghts (50–300 nm) obtained with synchroton radiation. Photochem Photobiol 54: 761–768PubMedCrossRefGoogle Scholar
  25. 25.
    National Institute for occupational safety and health (1972) Criteria for a recommended standard: Occupational exposure to ultraviolet radiation, US Department of Health, Education and Welfare, Washington, DCGoogle Scholar
  26. 26.
    Parish JA, Jaenicke K (1981) Action spectrum for phototherapy of psoriasis. J Invest Dermatol 76:359–362CrossRefGoogle Scholar
  27. 27.
    Parrish JA, Jaenicke KF, Anderson RR (1982) Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 36: 187–191PubMedCrossRefGoogle Scholar
  28. 28.
    Quintern LE, Horneck G, Eschweiler U, Bücker H (1992) A biofilm used as ultraviolet dosimeter. Photochem Photobiol 55: 389–395CrossRefGoogle Scholar
  29. 28.
    Quintern LE, Puskeppeleit M, Rainer P, Weber S, El Naggar S, Eschweiler U, Horneck G (1994) Continous dosimetry of the biologically harmful UV-radiation in Antarctica with the biofilm technique. J Photochem Photobiol B: Biol 22: 59–66CrossRefGoogle Scholar
  30. 30.
    Ronto G, Gaspar S, Berces A (1992) Phages T7 in biological UV dose measurements. J Photochem Photobiol B: Biol 12: 285–294CrossRefGoogle Scholar
  31. 31.
    Ronto G, Gaspar S, Grof P, Berces A, Gugolya Z (1994) Ultaviolet dosimetry in outdoor measurements based on bacteriophage T7 as a biosensor. Photochem Photobiol 59: 209–214CrossRefGoogle Scholar
  32. 32.
    Seckmeyer G, McKenzie RL (1992) Increased ultraviolet radiation in New Zealand (45°S) relative to Germany (48°N). Nature 359: 135–137CrossRefGoogle Scholar
  33. 33.
    Seckmeyer G, Mayer B, Bernhard G, Erb R (1995) UV monitoring in Germany: past, present and future. In: Diffey BL (ed) Measurements and trends of terrestrial UVB radiation in Europe. OEMF. Milano, p 73–86Google Scholar
  34. 34.
    Seckmeyer G, Mayer B, Bernhard G, McKenzie RL, Johnston PV, Kotkamp M, Booth CR, Lucas T, Mestechkina T, Roy CR, Gies HP, Tomlinson D (1995) Geographical differences in the UV measured by intercompared spectroradiometers. Geophys Res Lett 22:1889–1892CrossRefGoogle Scholar
  35. 35.
    Setlow RB (1974) The wavelenghts in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci USA 71: 3363–3366PubMedCrossRefGoogle Scholar
  36. 36.
    Tsyganenko NM, Kiseleva MN, Alkseyev AB, Dodonova N, Chunayev AS, Khromov-Borisov NN (1987) Photodimerisation of uracil as films and its possible application for dosimetry of genetically active ultraviolet radiation. Biofizika (USSR) 32: 7–11Google Scholar
  37. 37.
    Tyrell RM (1980) Solar dosimetry and weighting factors. Photochem Photobiol 31:421–422CrossRefGoogle Scholar
  38. 38.
    Wang TV (1991) A simple convenient biological dosimeter for monitoring solar UV-B radiation. Biochem Biophys Res Commun 177: 48–53PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • I. Stocks
  • M. Chen
  • H. Kaase
  • W. Lechner

There are no affiliations available

Personalised recommendations