Advertisement

Permissive Hypercapnia

  • M. B. Amato
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 30)

Abstract

Permissive hypercapnia (PH) is becoming a widely accepted strategy for decreasing ventilator-induced lung injury [1–13]. It is not a therapeutic endpoint, but rather the penalty we have to pay for decreasing alveolar ventilation when we give priority to the limitation of lung overdistension. Its rationale is the assumption that transitory effects of hypercapnia are less deleterious than the lung damage produced by conventional attempts to keep a target PaCO2 around 40 mmHg [13–15].

Keywords

Lung Injury Acute Lung Injury Acute Respiratory Distress Syndrome Pulmonary Vascular Resistance Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Menitove SM, Goldring RM (1983) Combined ventilator and bicarbonate strategy in the management of status asthmaticus. Am J Med 74: 898 – 901PubMedCrossRefGoogle Scholar
  2. 2.
    Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129: 385 – 387PubMedGoogle Scholar
  3. 3.
    Perret C, Feihl F (1992) Respiratory failure in asthma: management of the mechanically ventilated patient. In: Vincent JL (ed) Update in Intensive Care Medicine. Springer–Verlag, Berlin, pp 364 – 371Google Scholar
  4. 4.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnea in severe adult respiratory dis¬tress syndrome. Intensive Care Med 16: 372 – 377PubMedCrossRefGoogle Scholar
  5. 5.
    Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low–volume, pressure–limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22: 1568 – 1578PubMedCrossRefGoogle Scholar
  6. 6.
    Bidani A, Tzouanakis AE, Cardenas VJ Jr, Zwischenberger JB (1994) Permissive hypercapnia in acute respiratory failure. JAMA 272: 957 – 962PubMedCrossRefGoogle Scholar
  7. 7.
    Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150: 1722 – 1737PubMedGoogle Scholar
  8. 8.
    Tuxen DV (1994) Permissive hypercapnia. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw Hill, New York, pp 371 – 392Google Scholar
  9. 9.
    Mclntyre RC, Haenel JV, Moore FA, Read RR, Burch JM, Moore EE (1994) Cardiopulmonary effects of permissive hypercapnia in the management of adult respiratory distress syndrome. J Trauma 37: 433 – 438CrossRefGoogle Scholar
  10. 10.
    Amato MBP, Barbas CSV, Medeiros DM, et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in ARDS: A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152: 1835 – 1846PubMedGoogle Scholar
  11. 11.
    Simon RJ, Mawilmada S, Ivatury RR (1994) Hypercapnia: Is there a cause for concern? J Trauma 37: 74 – 81PubMedCrossRefGoogle Scholar
  12. 12.
    Gentilello LM, Anardi D, Mock C, Arreola–Risa C, Maier RV (1995) Permissive hypercapnia in trauma patients. J Trauma 39: 846 – 853Google Scholar
  13. 13.
    Pesenti A (1990) Target blood gases during ARDS ventilatory management. Intensive Care Med 16: 349 – 351PubMedCrossRefGoogle Scholar
  14. 14.
    Rahn H (1976) Why are pH of 7.4 and PaC02 of 40 mmHg normal values for man? Bull Eur Physiopathol Res 12: 5 – 12Google Scholar
  15. 15.
    Rahn H, Reeves RB, Howell BJ (1975) Hydrogen ion regulation, temperature and evolution. Am Rev Respir Dis 112: 165 – 172PubMedGoogle Scholar
  16. 16.
    Braman SS, Kaemmerlen JT (1990) Intensive care of status asthmaticus. A 10–year experience. JAMA 264: 366 – 368PubMedCrossRefGoogle Scholar
  17. 17.
    Sydow M, Burchardi H (1991) Intensive care management of life–threatening status asthmaticus. In: Vincent JL (ed) Update in Intensive Care and Emergency Medicine. Springer–Verlag, Berlin, pp 313 – 323Google Scholar
  18. 18.
    Henderson A, Wright M (1992) Status asthmaticus: experience of 100 consecutive admissions to an intensive care unit. Clin Intensive Care 3: 148 – 152Google Scholar
  19. 19.
    Williams TJ, Tuxen DV, Scheinkestel CD, Czarny D, Bowes G (1992) Risk factors for morbidity in mechanically ventilated patients with acute vere asthma. Am Rev Respir Dis 146: 607 – 615PubMedGoogle Scholar
  20. 20.
    Bellomo R, McLaughlin P, Tai E, Parkin G (1994) Asthma requiring mechanical ventilation. A low morbidity approach. Chest 105: 891 – 896PubMedCrossRefGoogle Scholar
  21. 21.
    Picado C, Montserrat JM, Roca J, et al. (1983) Mechanical ventilation in severe exacerbation of asthma. Eur J Respir Dis 64: 102 – 107PubMedGoogle Scholar
  22. 22.
    Higgins B, Greening AP, Crompton GK (1986) Assisted ventilation in severe acute asthma. Thorax 41: 464 – 467PubMedCrossRefGoogle Scholar
  23. 23.
    Mansel JK, Stegner SW, Petrini MF, Norman JR (1990) Mechanical ventilation in patients with acute severe asthma. Am J Med 89: 42 – 48PubMedCrossRefGoogle Scholar
  24. 24.
    Luksza A, Smith P, Coakley J, Gordan IJ, Atherton ST (1986) Acute severe asthma treated by mechanical ventilation: 10 years’ experience from a district general hospital. Thorax 41: 459 – 463PubMedCrossRefGoogle Scholar
  25. 25.
    Lewandowski K, Slama K, Falke KJ (1992) Approaches to improve survival in severe ARDS. In: Vincent JL (ed) Update of Intensive Care and Emergency Medicine. Springer–Verlag, Berlin, pp 372 – 383Google Scholar
  26. 26.
    Lewandowski K, Pappert D, Gerlach H, Rossaint R, Kuhlen R, Falke KJ (1995) Permissive hypercapnia in the treatment of ARDS. Am J Respir Crit Care Med 151: A79 (Abst)Google Scholar
  27. 27.
    Reynolds EM, Ryan DP, Doody DP (1993) Permissive hypercapnia and pressure–controlled ventilation as treatment of severe adult respiratory distress syndrome in a pediatric burn patient. Crit Care Med 21: 944 – 947PubMedCrossRefGoogle Scholar
  28. 28.
    Sheridan RL, Kacmarek RM, McEttrick MM, et al (1995) Permissive hypercapnia as a ventilatory strategy in burned children: Effect on barotrauma, pneumonia and mortality.J Trauma 39: 854 – 859Google Scholar
  29. 29.
    Kraybill EN, Runyan DK, Bose CL, Khan JH (1989) Risk factors for chronic lung disease in infants with birth weights of 751 to 1000 grams. J Pediatr 115: 155 – 170Google Scholar
  30. 30.
    Amato MBP, Barbas CSV, Medeiros D, et al (1996) Improved survival in ARDS: Beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (Abst)Google Scholar
  31. 31.
    Roupie E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121 – 128PubMedGoogle Scholar
  32. 32.
    Slutsky AS (1993) ACCP Consensus Conference. Mechanical Ventilation. Chest 104: 1833 – 1859PubMedCrossRefGoogle Scholar
  33. 33.
    Bshouty Z, Younes M (1992) Effect of breathing pattern and level of ventilation on pulmonary fluid filtration in dog lung. Am Rev Respir Dis 145: 372 – 376PubMedGoogle Scholar
  34. 34.
    Stalcup SA, Mellins RB (1977) Mechanical forces producing pulmonary edema in acute asthma. N Engl J Med 297: 592 – 596PubMedCrossRefGoogle Scholar
  35. 35.
    Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Buckhold D (1988) Acute respiratory failure following pharmacologically induced hyperventilation: an experimental study. Intensive Care Med 15: 8 – 14PubMedCrossRefGoogle Scholar
  36. 36.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume and positive end–expiratory pressure. Am Rev Respir Dis 137: 1159 – 1164PubMedGoogle Scholar
  37. 37.
    Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure–induced lung injury in young rabbits. J Appi Physiol 66: 2364 – 2368Google Scholar
  38. 38.
    Amato MBP, Barbas CSV, Bonassa J, Saldiva PHN, Zin WA, Carvalho CRR (1992) Volume as sured pressure support ventilation (VAPSV). A new approach for reducing muscle work load during acute respiratory failure. Chest 102: 1225 – 1234PubMedCrossRefGoogle Scholar
  39. 39.
    Andersen JB (1992) Introducing pressure regulated volume control (PRVC) and volume support (VS). In: Improved Care for the Critically 111 “ Siemens ” Life Support Systems (divulging material), Copenhagen, pp 5–20Google Scholar
  40. 40.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end–expiratory pressure. Am Rev Respir Dis 110: 556 – 565PubMedGoogle Scholar
  41. 41.
    Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59: 1278 – 1285PubMedCrossRefGoogle Scholar
  42. 42.
    Snyder JV (1987) Pulmonary physiology. In: Snyder JV, Pinsky MR (eds) Oxygen Transport in the Critically 111. Year Book Medical Publishers, pp 295 – 317Google Scholar
  43. 43.
    Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end–expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14: 538 – 546PubMedCrossRefGoogle Scholar
  44. 44.
    Bshouty Z, Younes M (1988) Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes. J Appi Physiol 64: 1900 – 1907Google Scholar
  45. 45.
    Corbridge TC, Wood LDH, Crawford GP, Chudoba MJ, Yanos J, Sznadjer JI (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142: 311 – 315PubMedGoogle Scholar
  46. 46.
    Dreyfuss D, Saumon G (1994) Should the lung be rested or recruited? The charybdis and scylla of ventilator management. Am J Respir Crit Care Med 149: 1066 – 1068PubMedGoogle Scholar
  47. 47.
    Muscedere JG, Mullen JBM, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327 – 1334PubMedGoogle Scholar
  48. 48.
    Sechzer PH, Egbert LD, Linde HW, Cooper DY, Dripps RD, Price HL (1960) Effect of C02 inhalation on arterial pressure, ECG and plasma catecholamines and 17–OH corticosteroids in normal man. J Appi Physiol 15: 454 – 458Google Scholar
  49. 49.
    Walley KR, Lewis TH, Wood LDH (1990) Acute respiratory acidosis decreases left ventricular contractility but increases cardiac output in dogs. Circ Res 67: 628 – 635PubMedGoogle Scholar
  50. 50.
    Wexels JC, Mjos OD (1987) Effects of carbon dioxide and pH on myocardial function in dogs with acute left ventricular failure. Crit Care Med 15: 1116 – 1120PubMedCrossRefGoogle Scholar
  51. 51.
    Tang W, Weil MH, Gazmuri RJ, Bisera J, Rackow EC (1991) Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Crit Care Med 19: 218 – 224PubMedCrossRefGoogle Scholar
  52. 52.
    Thorens JB, Jolliet P, Ritz M, Chevrolet JC (1996) Effects of rapid permissive hypercapnia on hemodynamics, gas exchange, and oxygen transport and consumption during mechanical ventilation for the acute respiratory distress syndrome. 22: 182 – 119Google Scholar
  53. Rothe CF, Stein PM, MacAnespie CL, Gaddis ML (1985) Vascular capacitance responses to severe systemic hypercapnia and hypoxia in dogs. Am J Physiol 249:H 1061 – 1069Google Scholar
  54. 54.
    Gaddis ML, MacAnesoie CL, Rothe CF (1986) Vascular capacitance responses to hypercapnia of the vascularly isolated head. Am J Physiol 251: H164 – 170PubMedGoogle Scholar
  55. 55.
    Amato MBP, Barbas CSV, Medeiros DM, et al (1994) Hemodynamic effects of permissive hypercapnia with high PEEP and low tidal volume in ARDS. Am J Respir Crit Care Med 149: A75 (Abst)Google Scholar
  56. 56.
    Thorens JB, Chopard P, Jolliet P, Chevrolet JC (1994) Effect of permissive hypercapnia on tissue oxygenation in acute respiratory failure. Am J Respir Crit Care Med 149: A68 (Abst)Google Scholar
  57. 57.
    Puybasset L, Stewart T, Rouby JJ, et al (1994) Inhaled nitric oxide reverses the increase in pulmonary vascular resistance induced by permissive hypercapnia in patients with ARDS. Anesthesiology 80: 1254 – 1267PubMedCrossRefGoogle Scholar
  58. Anderson RJ, Rose CE, Berns AS, Erickson AL, Arnold PE (1980) Mechanism of effect of hypercapnic acidosis on renin secretion in the dog. Am J Physiol 238: Fl 19 – F125Google Scholar
  59. 59.
    Nguyen PJ, Tao W, Zwischenberger T, et al (1994) Effect of rapid permissive hypercapnia on carotid, renal and mesenteric blood flows in an ovine model. Am J Respir Crit Care Med 149: A69 (Abst)Google Scholar
  60. Carvalho CRR, Barbas CSV, Medeiros DM, et al (1997) Temporal hemodynamic effects of permissive hypercapnia associated with “ideal PEEP” in ARDS (In press)Google Scholar
  61. 61.
    Vittanen A, Salmenperä M, Heinonen J, Hynynen M (1989) Pulmonary vascular resistance before and after cardiopulmonary bypass. The effect of PaC02. Chest 95: 773 – 778CrossRefGoogle Scholar
  62. 62.
    Chang AC, Zucker HA, Hickey PR, Wessel DL (1995) Pulmonary vascular resistance in infants after cardiac surgery: Role of carbon dioxide and hidrogen ion. Crit Care Med 23: 568 – 574PubMedCrossRefGoogle Scholar
  63. 63.
    Baudouin SV, Evans TW (1993) Action of carbon dioxide on hypoxic pulmonary vasoconstriction in the rat lung: evidence against specific endothelium–derived relaxing factor–mediated vasodilation. Crit Care Med 21: 740 – 746PubMedCrossRefGoogle Scholar
  64. 64.
    Malik AB, Kidd BSL (1973) Independent effects of changes in H+ and C02 concentrations on hypoxic pulmonary vasoconstriction. J Appi Physiol 34: 318 – 323Google Scholar
  65. 65.
    Leeman M, Lejeune P, Closset J, Vachiéry JL, Mélot C, Naeije R (1990) Effects of PEEP on pulmonary hemodynamics in intact dogs with oleic acid pulmonary edema. J Appi Physiol 69: 2190 – 2196Google Scholar
  66. 66.
    Canada E, Benumof JL, Tousdale FR (1982) Pulmonary vascular resistance correlates in intact normal and abnormal canine lungs. Crit Care Med 10: 719 – 723PubMedCrossRefGoogle Scholar
  67. 67.
    Prewitt RM, McCarthy J, Wood LDH (1981) Treatment of acute low pressure pulmonary edema in dogs. Relative effects of hydrostatic and oncotic pressure, nitroprusside, and positive end–expiratory pressure. J Clin Invest 67: 409 – 418PubMedCrossRefGoogle Scholar
  68. 68.
    Younes M, Bshouty Z, Ali J (1987) Longitudinal distribution of pulmonary vascular resistance with very high pulmonary blood flow. J Appi Physiol 62: 344 – 358Google Scholar
  69. 69.
    Collee GG, Lynch KE, Hill RD, Zapol WM (1987) Bedside measurement of pulmonary capillary pressure in patients with acute respiratory failure. Anesthesiology 66: 614 – 620PubMedCrossRefGoogle Scholar
  70. 70.
    Benzing A, Bräutigam P, Geiger K, Loop T, Beyer U, Moser E (1995) Inhaled nitric oxide reduces pulmonary transvascular albumin flux in patients with acute lung injury. Anesthesiology 83: 1153 – 1161PubMedCrossRefGoogle Scholar
  71. 71.
    Hida W, Hildebrandt J (1984) Alveolar surface tension, lung inflation, and hydration affect interstitial pressure [Px(f)]. J Appi Physiol 57: 262 – 270Google Scholar
  72. 72.
    Inoue H, Inoue C, Hildebrandt J (1980) Vascular and airway pressures, and interstitial edema affect peribronchial fluid pressure. J Appi Physiol 48: 177 – 185Google Scholar
  73. 73.
    Frostell CG (1994) Acute lung injury and inhaled NO. The reduction of pulmonary capillary pressure has implications for lung fluid balance. Acta Anaesthesiol Scand 38: 623 – 624PubMedCrossRefGoogle Scholar
  74. 74.
    Oyesiku NM, Amacher AL (1990) Intracraneal pressure. In: Oyesiku NM, Amacher AL (eds) Patient Care in Neurosurgery, third ed. Little, Brown and Co, Boston, Toronto, London, pp 25 – 59Google Scholar
  75. 75.
    Fessler HE, Brwer RG, Shapiro EP, Permutt S (1993) Effects of positive end–expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis 148: 1657 – 1664PubMedGoogle Scholar
  76. 76.
    Nanas S, Magder S (1992) Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 146: 688 – 693PubMedGoogle Scholar
  77. 77.
    Fletcher R (1989) Relationship between alveolar dead space and arterial oxygenation in children with congenital cardiac disease. Br J Anaesth 62: 168 – 176PubMedCrossRefGoogle Scholar
  78. 78.
    Blanch L, Fernandez R, Benito S, Mancebo J, Net A (1987) Effect of PEEP on the arterial minus end–tidal carbon dioxide gradient. Chest 92: 451 – 454PubMedCrossRefGoogle Scholar
  79. 79.
    Murray IP, Modell JH, Gallagher TJ, Banner MJ (1984) Titration of PEEP by the arterial minus end–tidal carbon dioxide gradient. Chest 85: 100 – 104PubMedCrossRefGoogle Scholar
  80. 80.
    Coffey RL, Albert RK, Robertson HT (1983) Mechanisms of physiological dead space response to PEEP after acute oleic acid during lung injury. J Appi Physiol 55: 1550 – 1557Google Scholar
  81. 81.
    Selecky PA, Wasserman K, Klein M, Ziment I (1978) A graphic approach to assessing interrelationships among minute ventilation, arterial carbon dioxide tension, and ratio of physiologic dead space to tidal volume in patients on respirators. Am Rev Respir Dis 117: 181 – 184PubMedGoogle Scholar
  82. 82.
    Cole AGH, Weller SF, Sykes MK (1984) Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 10: 227 – 232PubMedCrossRefGoogle Scholar
  83. 83.
    Lichtwarck–Aschof M, Nielsen JB, Sjostrand UH, Edgren EL (1992) An experimental randomized study of five different ventilatory modes in a piglet model of severe respiratory distress. Intensive Care Med 18: 339 – 347CrossRefGoogle Scholar
  84. 84.
    Lachmann B, Haendly H, Schultz H, Jonson B (1980) Improved arterial oxygenation, PaC02 elimination, compliance and barotrauma following changes of volume–generated PEEP ventilation with inspiratory/expiratory (I/E) ratio of 1:2 to pressure–generated ventilation with I:E ratio of 4:1 in patients with severe adult respiratory distress syndrome (ARDS). Intensive Care Med 6: 64 – 76Google Scholar
  85. 85.
    Gattinoni L, Mascheroni D, Borelli M, Basilico E, Pesenti A (1991) Ventilation in severe ARDS: Inverted ratio ventilation and C02 removal. In: Lemaire F (ed) Mechanical Ventilation. Springer–Verlag, Berlin, pp 129 – 145Google Scholar
  86. 86.
    Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA (1994) Long–term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume–controlled inverse ratio ventilation. Am J Respir Crit Care Med 149: 1550 – 1556PubMedGoogle Scholar
  87. 87.
    Marini JJ (1994) Ventilation of the acute respiratory distress syndrome. Looking for Mr. Goodmode. Anesthesiology 80: 972 – 975PubMedCrossRefGoogle Scholar
  88. 88.
    Al–Saady NM (1994) Does dietary manipulation influence weaning from artificial ventilation? Intensive Care Med 20: 463 – 465PubMedCrossRefGoogle Scholar
  89. 89.
    Venus B, Smith RA, Patel C, Sandoval E (1989) Hemodynamics and gas exchange alterations during intralipid infusion in patients with adult respiratory distress syndrome. Chest 95: 1278 – 1281PubMedCrossRefGoogle Scholar
  90. 90.
    Askanazi J, Elwyn DH, Silverberg PA, Rosebaum SH, Kinney JM (1980) Respiratory distress syndrome secondary to a high carbohydrate load. Surgery 87: 596 – 598PubMedGoogle Scholar
  91. 91.
    Tobin MJ, Fahey PJ (1994) Management of the patient who is “fighting the ventilator”. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw Hill, New York, pp 1149 – 1162Google Scholar
  92. 92.
    Manthous CA, Hall JB, Kushner R, Schmidt GA, Russo G, Wood LDH (1995) The effect of mechanical ventilation on oxygen consumption in critically ill patients. Am J Respir Crit Care Med 151: 210 – 214PubMedGoogle Scholar
  93. 93.
    Zwischenberger JB, Nguyen TT, Tao W, et al (1994) IVOX with gradual permissive hypercapnia: a new management technique for respiratory failure. J Surg Research 57:9–105Google Scholar
  94. 94.
    Zwischenberger JB, Cardenas VJ Jr, Tao W, Niranjan SC, Clark JW, Bidani A (1994) Intravascular membrane oxygenation and carbon dioxide removal with IVOX: can improved design and permissive hypercapnia achieve adequate respiratory support during severe respiratory failure? Artif Organs 18: 833 – 839PubMedCrossRefGoogle Scholar
  95. 95.
    Tao W, Zwischenberger JB, Nguyen TT, et al (1994) Performance of an intravenous gas exchanger (IVOX) in a venovenous bypass circuit. Ann Thorac Surg 57: 1484 – 1491PubMedCrossRefGoogle Scholar
  96. 96.
    Brunet F, Mira JP, Cerf C, et al (1994) Permissive hypercapnia and intravascular oxygenator in the treatment of patients with ARDS. Artif Organs 18: 826 – 832PubMedCrossRefGoogle Scholar
  97. 97.
    Mira JP, Brunet F, Belghith M, et al (1995) Reduction of ventilator settings allowed by intravenous oxygenator (IVOX) in ARDS patients. Intensive Care Med 21: 11 – 17PubMedCrossRefGoogle Scholar
  98. 98.
    Nahum A, Ravenskraft SA, Nakos G, et al (1992) Tracheal gas insufflation during pressure–control ventilation. Effect of catheter position, diameter, and flow rate. Am Rev Respir Dis 146: 1411 – 1418PubMedGoogle Scholar
  99. 99.
    Nahum A, Burke WC, Ravenskraft SA, et al (1992) Lung Mechanics and gas exchange during pressure control ventilation in dogs: augmentation of C02 elimination by an intratracheal catheter. Am Rev Respir Dis 146: 965 – 973PubMedGoogle Scholar
  100. 100.
    Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ (1993) Effect of catheter flow direction on C02 removal during tracheal gas insufflation in dogs. J Appi Physiol 75: 1238 – 1246Google Scholar
  101. 101.
    Ravenscraft SA, Burke WC, Nahum A, et al (1993) Intratracheal gas insufflation augments C02 clearance during mechanical ventilation. Am Rev Respir Dis 148: 345 – 351PubMedGoogle Scholar
  102. 102.
    Nakos G, Zakinthinos S, Kotanidou A, Tsagaris H, Roussos C (1994) Tracheal gas insufflation reduces tidal volume while PaC02 is maintained constant. Intensive Care Med 20: 407 – 413PubMedCrossRefGoogle Scholar
  103. 103.
    Burke WC, Nahum A, Ravenscraft SA et al (1993) Modes of tracheal gas insufflation. Comparison of continuous and phase–specific gas injection in normal dogs. Am Rev Respir Dis 148: 562 – 568PubMedGoogle Scholar
  104. 104.
    Nahum A, Shapiro RS, Ravenscraft SA, Adams AB, Marini JJ (1995) Efficacy of expiratory tracheal gas insufflation in a canine model of lung injury. Am J Respir Crit Care Med 152: 489 – 495PubMedGoogle Scholar
  105. 105.
    Kuo PH, Wu HD, Yu CJ, Yang SC, Lai YL (1996) Efficacy of tracheal gas insufflation in acute respiratory distress syndrome with permissive hypercapnia. Am J Respir Crit Care Med 154: 612 – 616PubMedGoogle Scholar
  106. 106.
    Eckmann DM, Gavriely N (1996) Chest vibration redistributes intra–airway C02 during tracheal insufflation in ventilatory failure. Crit Care Med 24: 451 – 457PubMedCrossRefGoogle Scholar
  107. 107.
    Sandhar BK,Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end–expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14: 538 – 546CrossRefGoogle Scholar
  108. 108.
    Egan EA (1982) Lung inflation, lung solute permeability, and alveolar edema. J Appi Physiol 53: 121 – 125Google Scholar
  109. 109.
    Egan EA (1980) Response of alveolar epithelial solute permeability to changes in lung inflation. J Appi Physiol 49: 1032 – 1036Google Scholar
  110. 110.
    Macklem PT, Murphy B (1974) The forces applied to the lung in health and disease. Am J Med 57: 371 – 377PubMedCrossRefGoogle Scholar
  111. 111.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: A model of pulmonary elasticity. J Appi Physiol 28: 596 – 608Google Scholar
  112. 112.
    Avery ME, Tooley WH, Keller JB, et al (1987) Is chronic lung disease in low birth weight infants preventable? Pediatrics 79: 26 – 30PubMedGoogle Scholar
  113. 113.
    Van Marter LJ, Pagano M, Allred EN, Levitón A, Kuban KCK (1992) Rate of bronchopulmonary dysplasia as a function of neonatal intensive care practices. J Pediatr 120: 938 – 946PubMedCrossRefGoogle Scholar
  114. 114.
    Enhorning G, Robertson B (1972) Lung expansion in the premature rabbit fetus after tracheal deposition of surfactant. Pediatrics 50: 58 – 66PubMedGoogle Scholar
  115. 115.
    Snyder JV, Froese A (1987) Respirator lung. In: Snyder JV, Pinsky MR (eds) Oxigen Transport in the Critically 111. Year Book Medical Publishers, pp 358 – 373Google Scholar
  116. 116.
    Berg TJ, Pagtakhan RD, Reed MH, Langston C, Chernick V (1975) Bronchopulmonary dysplasia and lung rupture in hyaline membrane disease: influence of continuous distending pressure. Pediatrics 55: 51 – 54PubMedGoogle Scholar
  117. 117.
    Nilsson R, Grossmann G, Robertson B (1980) Bronchiolar epithelial lesions induced in the premature rabbit neonate by short periods of artificial ventilation. Acta Path Microbiol Scand 88: 359 – 367Google Scholar
  118. 118.
    Cereda M, Foti G, Müsch G, Sparacino ME, Pesenti A (1996) Positive end–expiratory pressure prevents the loss of respiratory compliance during low tidal volume ventilation in acute lung injury patients. Chest 109: 480 – 485PubMedCrossRefGoogle Scholar
  119. 119.
    Blanch L, Fernandez R, Valles J, Sol’e J, Roussos C, Artigas A (1994) Effect of two tidal volumes on oxygenation and respiratory system mechanics during the early stage of adult respiratory distress syndrome. J Crit Care 9: 151 – 158PubMedCrossRefGoogle Scholar
  120. 120.
    Hoppin FG, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (ed) Bioengineering Aspects of the Lung. Marcel Dekker, New York and Basel, pp 83 – 162Google Scholar
  121. 121.
    McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant–deficient rabbits. Am Rev Respir Dis 137: 1185 – 1192PubMedGoogle Scholar
  122. 122.
    Amato MBP, Barbas CSV, Pastore L, Grünauer MA, Magaldi RB, Carvalho CRR (1996) Minimizing barotrauma in ARDS: Protective effects of PEEP and the hazards of driving and plateau pressures. Am J Respir Crit Care Med 153: A375 (Abst)Google Scholar
  123. 123.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end–inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194 – 1203PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. B. Amato

There are no affiliations available

Personalised recommendations