Skip to main content

Quantifying Lung Injury in ARDS

  • Conference paper
Acute Lung Injury

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 30))

Abstract

Normal water homeostasis in the lung is based on a balance among the so-called “Starling” forces: a vascular-to-extravascular hydrostatic pressure gradient, a similar but directionally opposite oncotic pressure gradient, and the “leakiness” or “permeability” of the alveolo-capillary endothelial membrane to protein [1,2]. This paradigm leads to a natural and clinically relevant distinction: Pulmonary edema can be either “cardiogenic”(i.e. due to increased hydrostatic pressures) or “non-cardiogenic” (i.e. due to increased vascular permeability). The prototypical example of non-cardiogenic pulmonary edema is the acute respiratory distress syndrome (ARDS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Staub NC (1978) The forces regulating fluid filtration in the lung. Microvasc Res 15: 45 – 55

    Article  PubMed  CAS  Google Scholar 

  2. Staub N (1974) Pulmonary edema. Physiol Rev 54: 678 – 721

    CAS  Google Scholar 

  3. National Heart L, and Blood Institute ( NHLBI ) (1994) NHLBI Task Force Report on Research in Cardiopulmonary Dysfunction in Critical Care Medicine. Bethesda, MD

    Google Scholar 

  4. Bernard GR, Artigas A, Grigham KL, et al (1994) The American-European Consensus conference on ARDS: Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818 – 824

    PubMed  CAS  Google Scholar 

  5. Murray VF, Mathay MA, Luce JM, et al (1988) Pulmonary perspectives: An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138: 720 – 723

    PubMed  CAS  Google Scholar 

  6. Doyle RL, Szaflarski N, Modin GW, et al (1995) Identification of patients with acute lung injury: Predictors of mortality. Am J Respir Crit Care Med 152: 1818 – 1824

    PubMed  CAS  Google Scholar 

  7. Schuster DP (1997) The evaluation of pulmonary edema by measuring lung water. In: Tobin MJ (ed) Principles and Practice of Intensive Care Monitoring. McGraw, New York

    Google Scholar 

  8. Effros RM (1985) Lung water measurements with the mean transit time approach. J Appi Physiol 59: 673 – 683

    CAS  Google Scholar 

  9. Sivak ED, Wiedemann HP (1986) Clinical measurement of extravascular lung water. Crit Care Clin 2: 511 – 526

    PubMed  CAS  Google Scholar 

  10. Allison RC, Carlile PV Jr, Gray BA (1985) Thermodilution measurement of lung water. Clin Chest Med 6: 439 – 457

    PubMed  CAS  Google Scholar 

  11. Pfeiffer U, Backus G, Blumel G, et al (1990) A fiberoptics based system for integrated monitoring of cardiac output, intrathoracic blood volume, extravascular lung water, 02 saturation, and a–v differences. In: Lewis F, Pfeiffer U (eds) Practical Applications of Fiberoptics in Critical Care Monitoring. Springer Verlag, Berlin, pp 114 – 125

    Google Scholar 

  12. Wickerts CJ, Jakobsson J, Frostell C, et al (1990) Measurement of extravascular lung water by thermal-dye dilution technique: Mechanisms of cardiac output dependence. Intensive Care Med 16: 115 – 120

    Article  PubMed  CAS  Google Scholar 

  13. Fallon KD, Drake RE, Laine GA, et al (1985) Effect of cardiac output on extravascular lung water estimates made with the Edwards lung water computer. Anesthesiology 62: 505 - 508

    Article  PubMed  CAS  Google Scholar 

  14. Zeravik J, Borg U, Pfeiffer UJ (1990) Efficacy of pressure support ventilation dependent on extravascular lung water. Chest 97: 1412 – 1419

    Article  PubMed  CAS  Google Scholar 

  15. Mitchell JP, Schuller D, Calandrino FS, et al (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145: 990 – 998

    PubMed  CAS  Google Scholar 

  16. Bock JC, Lewis FR (1990) Clinical relevance of lung water measurement with the thermal-dye dilution technique. J Surg Res 48: 254 – 265

    Article  PubMed  CAS  Google Scholar 

  17. Laggner AN, Lenz K, Druml W, et al (1987) Reproducibility of thermal-dye lung water measurements by a lung water computer in critically ill patients. Crit Care Med 15: 606 – 608

    Article  PubMed  CAS  Google Scholar 

  18. Mihm FG, Feeley TW, Jamieson SW (1987) Thermal dye double indicator dilution measurement of lung water in man: Comparison with gravimetric measurements. Thorax 42: 72 – 76

    Article  PubMed  CAS  Google Scholar 

  19. Lewis FR, Elings VB, Sturm JA (1979) Bedside measurement of lung water. J Surg Res 27: 250 – 261

    Article  PubMed  CAS  Google Scholar 

  20. Sivak ED, Starr NJ, Graves JW, et al (1982) Extravascular lung water values in patients undergoing coronary artery bypass surgery. Crit Care Med 10: 593 – 596

    Article  PubMed  CAS  Google Scholar 

  21. Sibbald WJ, Warshawski FJ, Short AK, et al (1983) Clinical studies of measuring extravascular lung water by the thermal dye technique in critically ill patients. Chest 83: 725 – 731

    Article  PubMed  CAS  Google Scholar 

  22. Gallagher JD, Moore RA, Kerns D, et al (1985) Effects of advanced age on extravascular lung water accumulation during coronary artery bypass surgery. Crit Care Med 13: 68 – 71

    Article  PubMed  CAS  Google Scholar 

  23. Sibbald WJ, Short AK, Warshawski FJ, et al (1985) Thermal dye measurements of extravascular lung water in critically ill patients. Intravascular Starling forces and extravascular lung water in the adult respiratory distress syndrome. Chest 87: 585 – 592

    Article  PubMed  CAS  Google Scholar 

  24. Haider M, Schad H (1990) Effect of positive end-expiratory airway pressure (PEEP) on extravascular thermal lung water estimation in the dog. In: Lewis F, Pfeiffer U (eds) Practical applications of fiberoptics in critical care monitoring. Springer Verlag, Berlin, pp 96 – 104

    Google Scholar 

  25. Bock J, Deuflhard P, Hoeft A, et al (1988) Thermal recovery after passage of the pulmonary circulation assessed by deconvolution. J Appi Physiol 64: 1210 – 1216

    CAS  Google Scholar 

  26. Newman E, Merrell M, Genecin A, et al (1951) The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circ 4: 735 – 746

    CAS  Google Scholar 

  27. Ramsey L, Puckett W, Jose A, et al (1961) Comparison of slope and mean transit time volumes by use of diffusible and non-diffusible indicators. Trans Assoc Am Physicians 74: 280 – 289

    PubMed  CAS  Google Scholar 

  28. Schuster DP, Calandrino FS (1991) Single versus double indicator dilution measurements of extravascular lung water. Crit Care Med 19: 84 – 88

    Article  PubMed  CAS  Google Scholar 

  29. Elings VB, Lewis FR (1982) A single indicator technique to estimate extravascular lung water. J Surg Res 33: 375 – 385

    Article  PubMed  CAS  Google Scholar 

  30. Baudendistel LJ, Kaminski DL, Dahms TE (1986) Evaluation of extravascular lung water by single thermal indicator. Crit Care Med 14: 52 – 56

    Article  PubMed  CAS  Google Scholar 

  31. Tagawa M, Okano S, Hara Y, et al (1993) Evaluation of extravascular thermal volume in the lung in dogs with endotoxin-induced shock by double indicator dilution method using heat and sodium ions. J Vet Med Sci 55: 87 – 91

    Article  PubMed  CAS  Google Scholar 

  32. Arakawa M, Kambara K, Segawa T, et al (1993) Usefulness of sodium chloride as a non-diffusible indicator in the measurement of extravascular lung thermal volume in dogs. Med Biol Eng Comput 31: S67 – S72

    Article  PubMed  Google Scholar 

  33. Matthay MA, Eschenbacher WL, Goetzl EJ (1984) Elevated concentrations of leukotriene D4 in pulmonary edema fluid of patients with the adult respiratory distress syndrome. J Clin Immunol 4: 479 – 483

    Article  PubMed  CAS  Google Scholar 

  34. Matthay MA, Wiener-Kronish JP (1990) Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis 142: 1250 – 1257

    PubMed  CAS  Google Scholar 

  35. Fein A, Grossman RF, Jones JG, et al (1979) The value of edema fluid protein measurement in patients with pulmonary edema. Am J Med 67: 32 – 38

    Article  PubMed  CAS  Google Scholar 

  36. Sprung CL, Rackow EC, Fein IA, et al (1981) The spectrum of pulmonary edema: Differentiation of cardiogenic intermediate non-cardiogenic forms of pulmonary edema. Am Rev Respir Dis 124: 718 – 722

    PubMed  CAS  Google Scholar 

  37. Sprung CL, Long WM, Marciai EH, et al (1987) Distribution of proteins in pulmonary edema. The value of fractional concentrations. Am Rev Respir Dis 136: 957 – 963

    PubMed  CAS  Google Scholar 

  38. Holter JF, Weiland JE, Pacht ER, et al (1986) Protein permeability in the adult respiratory distress Syndrome. Loss of size selectivity of the alveolar epithelium. J Clin Invest 78: 1513 – 1522

    Article  PubMed  CAS  Google Scholar 

  39. Hastings RH, Grady M, Sakuma T, et al (1992) Clearance of different-sized proteins from the alveolar space in humans and rabbits. J Appi Physiol 73: 1310 – 1316

    CAS  Google Scholar 

  40. Steinberg K, Mitchell D, Maunder R, et al (1993) Safety of bronchoalveolar lavage in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 148: 556 – 561

    PubMed  CAS  Google Scholar 

  41. Steinberg K, Milberg J, Martin T, et al (1994) Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am J Respir Crit Care Med 150: 113 – 122

    PubMed  CAS  Google Scholar 

  42. Clark J, Milberg J, Steinberg K, et al (1995) Type III procollagen peptide in the adult respiratory distress syndrome: Association of increased peptide levels in bronchoalveolar lavage fluid with increased risk for death. Ann Intern Med 1223: 17 – 23

    Google Scholar 

  43. Roselli RJ, Riddle WR (1989) Analysis of non-invasive macromolecular transport measurements in the lung. J Appi Physiol 67: 2343 – 2350

    CAS  Google Scholar 

  44. Schuster DP (1995) What is acute lung injury? What is ARDS? Chest 107: 1721 - 1726

    Article  PubMed  CAS  Google Scholar 

  45. Roselli R, Harris T. (1989) Lung fluid and macromolecular transport. In: HK C, MP (eds) Respiratory physiology: An analytical approach. Marcel Dekker, New York pp 633 – 735

    Google Scholar 

  46. Schuster DP (1989) Positron emission tomography: Theory and its application to the study of lung disease. Am Rev Respir Dis 139: 818 – 840

    PubMed  CAS  Google Scholar 

  47. Mintun MA, Dennis DR, Welch MJ, et al (1987) Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin. J Nucl Med 28: 1704 – 1716

    PubMed  CAS  Google Scholar 

  48. Mintun MA, Warfel TE, Schuster DP (1990) Evaluating pulmonary vascular permeability with radiolabeled proteins: An error analysis. J Appi Physiol 68: 1696 – 1706

    CAS  Google Scholar 

  49. Abernathy VJ, Pou NA, Wilson TL, et al (1995) Non-invasive measurements of albumin flux into lung interstitium with increased microvascular pressure. Am J Physiol 269: H288 – H296

    PubMed  CAS  Google Scholar 

  50. Velazquez M, Weibel ER, Kuhn CD, et al (1991) PET evaluation of pulmonary vascular permeability: A structure-function correlation. J Appi Physiol 70: 2206 - 2216

    CAS  Google Scholar 

  51. Dawson C, Roerig D, Linehan J (1989) Evaluation of endothelial injury in the human lung. Clin Chest Med 10: 13 – 24

    PubMed  CAS  Google Scholar 

  52. Peterson BT (1992) Permeability: Theory vs. practice in lung research. Am J Physiol 262: L243 – L256

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuster, D.P. (1998). Quantifying Lung Injury in ARDS. In: Marini, J.J., Evans, T.W. (eds) Acute Lung Injury. Update in Intensive Care and Emergency Medicine, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60733-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60733-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64532-7

  • Online ISBN: 978-3-642-60733-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics