Skip to main content

Inter- and Intraspecific Transfer of Toxic Insect Compound Cantharidin

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 130))

Abstract

Many arthropods are known to take up and to sequester toxic secondary compounds without being damaged (Bowers 1990). On the contrary, they use these plant-produced defensive chemicals for their own purposes and may increase their individual fitness. Very peculiar associations are observed between secondary chemicals from plants and so-called pharmacophagous insects. To these organisms special exogenous secondary compounds are highly attractive and are subsequently taken orally, detoxified and sequestered. These compounds drug-like may also increase survivorship of the pharmacophagous organism, because they are used as pheromone precursors or have morphogenetic activities (Boppré 1986). Moreover, these biologically active substances may be intra- and interspecifically transferred which may even result in a transfer of a special compound through trophic levels of an ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah M (1964)Protomeloe crowsoni, a new species of a new tribe (Protomeloini) of the blister beetles (Coleptera, Meloidae), with remarks on a postulated new pheromone (cantharidin). Entomol Ts Arg 86:43–48

    Google Scholar 

  • Aldrich JR (1988) Chemical ecology of the Heteroptera. Annu Rev Entomol 33: 211–238

    Article  Google Scholar 

  • Bangerter H (1933) Mücken-Metamorphosen V. Konowia 12: 248–259

    Google Scholar 

  • Barford D (1996) Molecular mechanisms of the protein serine/threonine phosphatases. TIBS 21: 407–412

    PubMed  CAS  Google Scholar 

  • Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41: 353–374

    Article  PubMed  CAS  Google Scholar 

  • Bochis RJ, Fisher MH (1968) The structure of palasonin. Tetrahedron Lett 16: 1971–1974

    Article  Google Scholar 

  • Bologna MA (1991) Coleóptera Meloidae, Fauna d’Italia, vol XXVIII, Calderini, Bologna

    Google Scholar 

  • Bologna MA, Havelka P (1984) Nuove segnalazioni di attrazione della cantharidina dei Meloidae su Coleotteri e Ditteri. Boll Assoc Rom Entomol 39: 77–82

    Google Scholar 

  • Boppré M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73: 17–26

    Article  Google Scholar 

  • Bowers MD (1990) Recycling plant natural compounds for insect defense. In: Evans DL, Schmidt JO (eds) Insect defences. State University of New York Press, Albany

    Google Scholar 

  • Brown KS, Trigo JR (1995) The ecological activities of alkaloids. In: Cordeil GA (ed) The alkaloids, vol 47. Academic Press, San Diego, pp 227–354

    Google Scholar 

  • Carrel JE, Eisner T (1974) Cantharidin: potent feeding deterrent to insects. Science 183: 755–757

    Article  PubMed  CAS  Google Scholar 

  • Carrel JE, McCairel MH, Slagle AJ, Doom JP, Brill J, McCormick JP (1993) Cantharidin production in a blister beetle. Experientia 49: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Holmes FB, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. TIBS 15: 98–102

    PubMed  CAS  Google Scholar 

  • Dettner K (1984) Description of defensive glands from cardinal beetles (Coleóptera, Pyrochroidae)–their phylogenetic significance as compared with other heteromeran defensive glands. Entomol Basil 9: 204–215

    Google Scholar 

  • Dettner K (1987) Chemosystematics and evolution of beetle chemical defenses. Annu Rev Entomol 32: 17–48

    Article  CAS  Google Scholar 

  • Dettner K, Reissenweber F (1991) The defensive secretion of Omaliinae and Proteininae (Coleóptera: Staphylinidae): its chemistry, biological and taxonomie significance. Biochem Syst Ecol 19: 291–303

    Article  CAS  Google Scholar 

  • Downes JA (1955) The food habits and descriptions ofAtrichopogon pollinivorussp. n. (Diptera: Ceratopogonidae). Trans R Entomol Soc Lond 106: 439–453

    Article  Google Scholar 

  • Downes JA (1958) The feeding habits of biting flies and their significance in classification. Annu Rev Entomol 3: 249–266

    Article  Google Scholar 

  • Downes JA (1978) Feeding and mating in the insectivorous Ceratopogoninae (Diptera). Mem Entomol Soc Can 105: 1–61

    Article  Google Scholar 

  • Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the mothUtetheisa ornatrix. Proc Natl Acad Sci USA 85: 5992–5996

    Article  PubMed  CAS  Google Scholar 

  • Eisner T (1988) Insekten als fürsorgliche Eltern. Verh Dtsch Zool Ges 81: 9–17

    Google Scholar 

  • Eisner T, Conner J, Carrel JE, McCormick JP, Slagle A J, Gans C, O’Reilly JC (1990) Systemic retention of ingested cantharidin by frogs. Chemoecology 1: 57–62

    Article  CAS  Google Scholar 

  • Eisner T, Smedley SR, Young DK, Eisner M, Roach B, Meinwald J (1996a) Chemical basis of courtship in a beetle(Neopyrochroa flabellata): cantharidin as precopulatory “enticing” agent. Proc Natl Acad Sci USA 93: 6494–6498

    Article  CAS  Google Scholar 

  • Eisner T, Smedley SR, Young DK, Eisner M, Roach B, Meinwald J (1996b) Chemical basis of courtship in a beetle(Neopyrochroa flabellata): cantharidin as “nuptial gift”. Proc Natl Acad Sci USA 93: 6499–6503

    Article  CAS  Google Scholar 

  • Feng Y, Jianqi M, Zhongren L, Tianpeng G (1988) A preliminary investigation of the cantharidin resources of Shaanxi province. Acta Univ Septentrión Occident Agrie 16: 28

    Google Scholar 

  • Feuell AJ (1965) Insecticides. In: von Wiesner J (ed) Die Rohstoffe des Pflanzenreiches, Lief 4. J Cramer, Weinheim 244 pp

    Google Scholar 

  • Fey F (1954) Beiträge zur Biologie der canthariphilen Insekten. Beitr Entomol 4: 180–187

    Google Scholar 

  • Freeman P (1983) Sciarid flies, Diptera, Sciaridae. Handbooks for the identification of British insects 9/6. Royal Entomological Society of London, London

    Google Scholar 

  • Frenzel M, Dettner K (1994) Quantification of cantharidin in canthariphilous Ceratopogonidae (Diptera), Anthomyiidae (Diptera) and cantharidin producing Oedemeridae (Coleóptera). JChem Ecol 20: 1795–1812

    Article  CAS  Google Scholar 

  • Frenzel M, Dettner K, Wirth D, Waibel J, Boland W (1992) Cantharidin analogues and their attractancy for ceratopogonid flies (Diptera: Ceratopogonidae). Experientia 48: 106–111

    Article  CAS  Google Scholar 

  • Gauld I, Bolton B (1988) The Hymenoptera. British Museum, Oxford University Press, Oxford, 332 pp

    Google Scholar 

  • Görnitz K (1937) Cantharidin als Gift und Anlockungsmittel für Insekten. Arb Phys Angew Entomol Berlin-Dahlem 4: 116–157

    Google Scholar 

  • Graziano MJ, Pessah IN, Matsuzawa M, Casida JE (1988) Partial characterization of specific cantharidin binding sites in mouse tissues. Mol Pharmacol 33: 706–712

    PubMed  CAS  Google Scholar 

  • Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA (1995) X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82: 507–522

    Article  PubMed  CAS  Google Scholar 

  • Havelka P (1979)Atrichopogon lucorum (Meigen, 1818) [Diptera, Ceratopogonidae] - ein neuer, temporärer, canthariphiler Ektoparasit am ÖlkäferMeloe violaceus Mrsh., 1802 [Coleptera, Meloinae]. Arbeitsgem Österr Entomologen 30:117–119

    Google Scholar 

  • Havelka P (1980)Meloe violaceus MARSH, 1802 (Coleptera, Meloinae) und seine cantariphilen Begleiter an einem Standort nrdlich Karlsruhe. Beitr Naturkd Forsch Südwestdschl 39:153–159

    Google Scholar 

  • Havelka P (1982) Die Ceratopogonidenfauna der Osterluzei(Aristolochia clematitis), Mosq News 42: 524

    Google Scholar 

  • Havelka P, Caspers N (1981) Die Gnitzen (Diptera, Nematocera, Ceratopogonidae) eines kleinen Waldbaches bei Bonn. Decheniana Beih 25: 1–100

    Google Scholar 

  • Havelka P, Caspers N (1981) Die Gnitzen (Diptera, Nematocera, Ceratopogonidae) eines kleinen Waldbaches bei Bonn. Decheniana Beih 25: 1–100

    Google Scholar 

  • Hennig W (1976) Anthomyiidae. In: Lindner E (Hrsg) Die Fliegen der Paläarktischen Region, VII/ 1, 1.-3. Teilband. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Holz C (1995) Die Bedeutung des Naturstoffs Cantharidin bei dem FeuerkäferSchizotus pectinicornis(Pyrochroidae). Verh Westdtsch Entomol Tag 1994: 73–78

    Google Scholar 

  • Holz C, Streu G, Dettner K, Dütemeyer J, Boland W (1994) Intersexual transfer of a toxic terpenoid during copulation and its paternal allocation to developmental stages: quantification of cantharidin in cantharidin-producing oedemerids (Coleóptera: Oedemeridae) and canthariphilous pyrochroids (Coleóptera: Pyrochroidae). Z Naturforsch 49c: 856–864

    Google Scholar 

  • Juanjie T, Youwei Z, Shuyong W, Zhengji D, Chuanxian Z (1995) Investigation on the natural resources and utilization of the Chinese medicinal beetles. Acta Entomol Sin 38: 324–331

    Google Scholar 

  • Kelling ST, Halpern BP, Eisner T (1990) Gustatory sensitivity of an anuran to cantharidin. Experientia 46: 763–764

    Article  PubMed  CAS  Google Scholar 

  • Klinger R (1979) Eine Sternaldrüse bei Kurzflügelkäfern. Systematische Verbreitung sowie Bau, Inhaltsstoffe und Funktion beiEusphalerum minutum(L.) (Coleóptera: Staphylinidae). Dissertation Universität Frankfurt, Frankfurt

    Google Scholar 

  • Klinger R (1983) Eusphaleren, blütenbesuchende Staphyliniden, 1) zur Biologie der Käfer. Dtsch Entomol Z N F 30: 37–44

    Article  Google Scholar 

  • Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from antennae ofBombyx mori. Insect Biochem Mol Biol 26: 297–307

    Article  PubMed  CAS  Google Scholar 

  • Kroner C, Boekhoff I, Breer H (1996) Phosphatase 2A regulates the responsiveness of olfactory-cilia. Biochim Biophys Acta 1312: 169–175

    Article  PubMed  Google Scholar 

  • Lengersdorf F (1930) Lycoriidae (Sciaridae). In: Lindner E (Hrsg) Die Fliegen der Paläarktischen Region, II /1. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • LeSage L, Bousquet Y (1983) A new record of attacks byPedilus(Pedilidae) onMeloe(Meloidae: Coleóptera). Entomol News 94: 95–96

    Google Scholar 

  • Li YM, Casida JE (1992) Cantharidin–binding protein, identification as protein phosphatase 2A. Proc Natl Acad Sci USA 89: 11867–11870

    Article  PubMed  CAS  Google Scholar 

  • MacKintosh C, MacKintosh RW (1994) Inhibitors of protein kinases and phosphates. TIBS 19: 444–448

    PubMed  CAS  Google Scholar 

  • Mafra-Neto A, Jolivet P (1994) Entomophagy in Chrysomelidae: adultAristobrotica angulicollis(Erichson) feeding on adult meloids (Coleóptera). In: Jolivet PH, Cox ML, E Petitpierre (eds) Novel aspects of the biology of Chrysomelidae. Kluwer, Dordrecht, pp 171–178

    Chapter  Google Scholar 

  • Matsuzawa M, Graziano MJ, Casida JE (1987) Endothal and cantharidin analogues: relation of structure to herbicidal activity and mammalian toxicity. J Agrie Food Chem 35: 823–829

    Article  CAS  Google Scholar 

  • Mayer MK (1962) Untersuchungen mit Cantharidin-Fallen über die Flugaktivität vonAtrichopogon (Meloehelea) oedemerarumStorá, einer an Insekten ektoparasitisch lebenden Ceratopogonidae (Diptera). Z Parasitenkd 21: 257–272

    Article  PubMed  CAS  Google Scholar 

  • McCormick JP, Carrel JE (1987) Cantharidin biosynthesis and function in meloid beetles. In: Blomquist GD, Blomquist GJ (eds) Pheromone biochemistry, Prestwich. Academic Press, Orlando, pp 307–350

    Google Scholar 

  • McKenna MP, Hekmat-Scafe DS, Gaines P, Carlson JR (1994) PutativeDrosophilapheromone-binding proteins expressed in a subregion of olfactory system. J Biol Chem 269: 16340–16347

    PubMed  CAS  Google Scholar 

  • Meyer D, Schlatter C, Schlatter-Lanz I, Schmid H, Bovey P (1968) Die Zucht vonLytta vesicatoriaim Laboratorium und Nachweis der Cantharidinsynthese in Larven. Experientia 24: 995–998

    Article  PubMed  CAS  Google Scholar 

  • Newton AF, Thayer MK (1995) Protopselaphinae new subfamily forProtopselaphusnew genus from Malaysia, with a phylogenetic analysis and review of the Omaliine group of Staphylinidae including Pselaphidae (Coleóptera). In: Pakaluk J, Slipinski SA (eds) Biology, phylogeny and classification of Coleóptera Museum i Institut Zoologii PAN, Warszawa, pp 219–320

    Google Scholar 

  • Pakaluk J (1984) Natural history and evolution ofLy coper dina ferruginea(Coleóptera: Endomychidae) with descriptions of immature stages. Proc Entomol Soc Wash 86: 312–325

    Google Scholar 

  • Parker SP (1982) Synopsis and classification of living organisms, vol 2. McGraw Hill, New York

    Google Scholar 

  • Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29: 199–228

    Article  PubMed  CAS  Google Scholar 

  • Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Physiol 111B: 503–514

    CAS  Google Scholar 

  • Pinto JD (1978) The parasitization of blister beetles by species of Miridae. Pan-Pac Entomol 54: 57–60

    Google Scholar 

  • Purevsuren G, Koblicova Z, Trojanek J (1987) Cantharidinimide, a novel substance fromMylabris mongolica. Dokth. Cesk Farm 36: 32–34

    CAS  Google Scholar 

  • Rohacek J, Beck-Hang I, Dobat K (1990) Sphaeroceridae associated with floweringArum maculatum(Araceae) in the vicinity of Tübingen, SW Germany (Insecta: Diptera). Senckenb Biol 71: 259–268

    Google Scholar 

  • Schliephake G, Klimt K (1979) Thysanoptera, Fransenflügler, die Tierwelt Deutschlands, Teil 66. Fischer, Jena

    Google Scholar 

  • Schmitz H (1981) 33. Phoridae. In: Lindner E (Hrsg) Die Fliegen der Paläarktischern Region, IV7. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Schütz C, Dettner K (1992) Cantharidin secretion by elytral notches of male anthicid species (Coleóptera: Anthicidae). Z Naturforsch 47c: 290–299

    Google Scholar 

  • Seeno TN, Wilcox JA (1982) Leaf beetle genera (Coleóptera: Chrysomelidae). Entomography 1: 1–222

    Google Scholar 

  • Shaw MR, Huddleston T (1991) Classification and biology of braconid wasps (Hymenoptera: Braconidae). Handbooks for the identification of British insects 7/11:1-126.Royal Entomological Society of London, London

    Google Scholar 

  • Shenolikar S (1994) Protein serin/threonine phosphatases–new avenues for cell regulation. Annu Rev Cell Biol 10: 55–86

    Article  PubMed  CAS  Google Scholar 

  • Smedley SR, Eisner T (1996) Sodium: a male moth’s gift to its offspring. Proc Natl Acad Sci USA 93: 809–813

    Article  PubMed  CAS  Google Scholar 

  • Szadziewski R, Krzywinski R (1988) Biting midges of the genusCulicoidesvisiting umbelliferous flowers in Poland. In: Olejnicek J (ed) Medical and veterinary dipterology, pp 155–158

    Google Scholar 

  • Thornhill R, Álcock J (1983) The evolution of insect mating systems. Harvard University Press, Cambridge, 547 pp

    Google Scholar 

  • Vogt RG, Prestwich GD, Lerner MR (1990) Odorant-binding-protein subfamiles associated with distinct classes of olfactory neurons in insects. J Neurobiol 22: 74–84

    Article  Google Scholar 

  • Wang GS (1989) Medical uses ofMylabrisin ancient China and recent studies. J Ethnopharmacol 26: 147–162

    Article  PubMed  CAS  Google Scholar 

  • Wink M (1993) Allelochemical properties or the raison d’etre of alkaloids, 1-118. In: Cordell GA (ed) The alkaloids, vol 43. Academic Press, San Diego.

    Google Scholar 

  • Wirth WW (1980) A new species and corrections in theAtrichopogonmidges of the subgenusMeloeheleaattacking blister beetles (Diptera: Ceratopogonidae). Proc Entomol Soc Wash 82: 124–139

    Google Scholar 

  • Young DK (1984a) Field studies of cantharidin orientation byNeopyrochroa flabellata(Coleóptera: Pyrochroidae). Great Lakes Entomol 17: 133–135

    Google Scholar 

  • Young DK (1984b)Anisotria shooki, a new genus and species of Pedilinae (Coleptera: Pyrochroidae) with a note on. The systematic position ofLithomacrataxia Wickham and a key to the genera. Coleopterist’s Bull 38:201–208

    Google Scholar 

  • Young DK (1984c) Cantharidin and insects: an historical review. Great Lakes Entomol 17: 187–194

    Google Scholar 

  • Young DK (1984d) Field records and observations of insects associated with cantharidin. Great Lakes Entomol 17: 195–199

    Google Scholar 

  • Young DK (1989) Notes on the bionomics ofXenomycetes morrisoniHorn (Coleóptera: Endomychidae) another cantharidin-orienting fungus beetle. Pan-Pac Entomol 65: 447–448

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dettner, K. (1997). Inter- and Intraspecific Transfer of Toxic Insect Compound Cantharidin. In: Dettner, K., Bauer, G., Völkl, W. (eds) Vertical Food Web Interactions. Ecological Studies, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60725-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60725-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64528-0

  • Online ISBN: 978-3-642-60725-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics