Skip to main content

The Sympatric Origin of Phytophagous Insects

  • Chapter
Vertical Food Web Interactions

Part of the book series: Ecological Studies ((ECOLSTUD,volume 130))

Abstract

Global estimates of the number of insect species now range from 10 to 30 million and the tally keeps growing. This means that roughly 75–95% of all living eukaryotic organisms are insects. No matter which figure you care to choose, the numbers are impressively large. What is it about insects that accounts for this inordinately large number of species? An assessment of their biological attributes provides at least three important clues. The most important concerns their relatively high degree of resource specialization. Approximately 70% of British insects, which are probably representative of the world’s insect fauna, are parasitoids or parasites on animals and plants (Price 1980). Of these about half feed on plants, with the majority infesting one or a few closely related hosts (Strong et al. 1984). A second important clue is that when sister species of these host specialists are found coexisting sympatrically or parapatrically they are almost always feeding on different host plant species. Finally, a third important characteristic shared by many of these host specialists is that they use their host plant or their host plant’s habitat as a rendezvous site for locating a mate (Bush 1975b; Zwölfer 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York

    Book  Google Scholar 

  • Barton NH (1989) Founder effect speciation. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, Sunderland, pp 229–256

    Google Scholar 

  • Boller E, Prokopy RJ (1976) The biology and management ofRhagoletis. Annu Rev Entomol 112:289–303

    Google Scholar 

  • Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterflyHelliconius eratoinferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA 91: 6491–6495

    Article  PubMed  CAS  Google Scholar 

  • Brues CT (1924) The specificity of food-plants in the evolution of phytophagous insects. Am Nat 58: 127–144

    Article  Google Scholar 

  • Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genusRhagoletis(Diptera, Tephritidae). Evolution 23: 237–251

    Article  Google Scholar 

  • Bush GL (1975a) Modes of animal speciation. Annu Rev Ecol Syst 6: 339–364

    Article  Google Scholar 

  • Bush GL (1975b) Sympatric speciation in phytophagous parasitic insects. In: Price PW (ed) Evolutionary strategies of parasitic insects and mites. Plenum, New York, pp 187–206

    Google Scholar 

  • Bush GL, Diehl SR (1982) Host shifts, genetic models of sympatric speciation and the origin of parasitic insect species. In: Visser JH, Minks AK (eds) Proc 5th Int Symp on Insect-plant relationships. Pudoc, Wageningen, The Netherlands, pp 297–305

    Google Scholar 

  • Bush GL (1993a) Host race formation and sympatric speciation inRhagoletisfruit flies (Diptera: Tephritidae). Psyche 99: 335–357

    Article  Google Scholar 

  • Bush GL (1993b) A reaffirmation of Santa Rosalia, or why are there so many kinds of small animals? In: Lees DR, Edwards D (eds) Evolutionary patterns and processes. Academic Press, London, pp 229–249

    Google Scholar 

  • Bush GL (1994) Sympatric speciation in animals: new wine in old bottles. Trends Ecol Evol 9: 285–288

    Article  PubMed  CAS  Google Scholar 

  • Bush GL, Howard DJ (1986) Allopatric and non-allopatric speciation: assumptions and evidence. In: Karlin S, Nevo E (eds) Evolutionary processes and theory. Academic Press, New York, pp 411–438

    Google Scholar 

  • Bush GL, Feder JL, Berlocher SH, McPheron BA, Smith DC, Chilcote CA (1989) Sympatric origins ofR. pomonella. Nature 339:346

    Article  Google Scholar 

  • Butlin RK (1995) Reinforcement: an idea evolving. Trends Ecol Evol 10: 432–434

    Article  PubMed  CAS  Google Scholar 

  • Carson HL (1975) The genetics of speciation at the diploid level. Am Nat 109: 83–92

    Article  Google Scholar 

  • Carson HL, Kaneshiro KY (1989) Natural hybridization between the sympatric Hawaiian speciesDrosophila silvestrisandDrosophila heteroneura. Evolution 43: 190–203

    Article  Google Scholar 

  • Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annu Rev Ecol Syst 15: 97–131

    Article  Google Scholar 

  • Coyne JA (1994) Ernst Mayr and the origin of species. Evolution 48: 19–30

    Article  Google Scholar 

  • Cracraft J (1987) Species concepts and the ontology of evolution. Biol Philos 2: 63–80

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species. A 1964 Facsimile. Harvard University Press. Cambridge

    Google Scholar 

  • de Meeüs T, Michalakis Y, Renaud F, Olivier I (1993) Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation: hard and soft selection models. Evol Ecol 7: 175–198

    Article  Google Scholar 

  • Dethier VG (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8: 33–54

    Article  Google Scholar 

  • Diehl SR, Bush GL (1984) An evolutionary and applied perspective of insect biotypes. Annu Rev Entomol 29: 471–504

    Article  Google Scholar 

  • Diehl SR, Bush GL (1989) The role of habitat preference in adaptation and speciation. In: Otte D, Endler J (eds) Speciation and its consequences. Sinauer, Sunderland, pp 345–365

    Google Scholar 

  • Diehl SR, Prokopy RJ (1986) Host-selection behavior differences between the fruit fly sibling speciesRhagoletis pomonellaand JR.mendax(Diptera: Tephritidae). Ann Entomol Soc Am 79: 266–271

    Google Scholar 

  • Emelianov I, Mallet J, Baltensweiler W (1995) Genetic differentiation inZeiraphera diniana(Lepidoptera: Tortricidae), the larch budmoth: polymorphism, host races or sibling species. Heredity 75: 416–424

    Article  Google Scholar 

  • Feder JL, Bush GL (1989) A field test of differential host plant usage between two sibling species ofRhagoletis pomonellafruit flies (Diptera: Tephritidae) and its consequences for sympatric speciation. Evolution 43: 1813–1819

    Article  Google Scholar 

  • Feder JL, Chilcote CA, Bush GL (1988) Genetic differentiation between sympatric host races ofRhagoletis pomonella. Nature 336: 61–64

    Article  Google Scholar 

  • Feder JL, Chilcote CA, Bush GL (1989) Are the apple maggot,Rhagoletis pomonellaand the blueberry maggot,R. mendax(Diptera: Tephritidae) distinct species? Implications for sympatric speciation. Entomol Exp Appi 51: 113–123

    Article  Google Scholar 

  • Feder JL, Chilcote CA, Bush GL (1990) Regional, local and microgeographic allele frequency variation between apple and hawthorn populations ofRhagoletis pomonellain western Michigan. Evolution 44: 595–608

    Article  Google Scholar 

  • Feder JL, Hunt TA, Bush GL (1993) The effects of climate, host plant phenology and host fidelity on the genetics of apple and hawthorn infesting populations ofRhagoletis pomonella(Diptera: Tephritidae). Entomol Exp Appi 69: 117–135

    Article  Google Scholar 

  • Feder JL, Opp SB, Walzlo B, Reynolds K, Go W, Spisak S (1994) Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly,Rhagoletis pomonella. Proc Natl Acad Sci USA 91: 7990–7994

    Article  PubMed  CAS  Google Scholar 

  • Feder JL, Reynolds K, Go W, Wang EC (1995) Intra-and interspecific competition and host race formation in the apple maggot fly,Rhagoletis pomonella(Diptera: Tephritidae). Oecologia 101: 416–425

    Article  Google Scholar 

  • Feder JL, Roethele JB, Walzlo B, Berlocher SH (1996a) Selective maintenance of allozyme differences between sympatric host races of the apple maggot fly. Proc Natl Acad Sci USA (submitted )

    Google Scholar 

  • Feder JL, Stolz U, Lewis KM, Perry WM, Roethele JB, Rogers A (1996b) Host plant-associated fitness trade-offs in the apple maggot fly: The interaction of host phenology and winter on the genetics of apple and hawthorn races ofRhagoletis pomonella( Diptera: Tephritidae). Evolution (submitted )

    Google Scholar 

  • Funk DJ, Futuyma DJ, Orti G, Meyer A (1995) A history of host associations and evolutionary diversification forOphraella(Coleóptera: Chrysomelidae): new evidence from mitochondrial DNA. Evolution 49: 1008–1017

    Article  CAS  Google Scholar 

  • Futuyma DJ (1990) Observations on the taxonomy and natural history ofOphraellaWilcox (Coleóptera: Chrysomelidae), with a description of a new species. J NY Entomol Soc 98: 163–186

    Google Scholar 

  • Futuyma DJ (1991) A new species ofOphraellaWilcox (Coleóptera: Chrysomelidae) from the southwestern United States. J NY Entomol Soc 99: 643–655

    Google Scholar 

  • Futuyma DJ, Mayer GC (1980) Non-allopatric speciation in animals. Syst Zool 29: 254–271

    Article  Google Scholar 

  • Futuyma DJ, McCafferty SS (1990) Phylogeny and the evolution of host plant associations in the leaf beetle genusOphraella(Coleóptera, Chrysomelidae). Evolution 44: 1885–1913

    Article  Google Scholar 

  • Futuyma DJ, Keese MC, Funk DJ (1995) Genetic constraints on macroevolution: the evolution of host affiliation in the leaf beetle genusOphraella. Evolution 49: 797–809

    Article  Google Scholar 

  • Galiana A, Moya A, Ayala FJ (1993) Founder-flush speciation inDrosophila pseudoobscura; a large-scale experiment. Evolution 47: 432–444

    Article  Google Scholar 

  • Guidemond JA, Mackenzie A (1994) Sympatric speciation in aphids. I. Host race formation by escape from gene flow. In: Leather SR, Walters KFA, Mills NJ, Watt AD (eds) Individuals, populations and patterns in ecology. Intercept, Andover, Hampshire, pp 367–378

    Google Scholar 

  • Jaenike J (1981) Criteria for ascertaining the existence of host races. Am Nat 117: 830–834

    Article  Google Scholar 

  • Johnson P, Hoppensteadt F, Smith J, Bush GL (1996) Conditions for sympatric speciation: a diploid model incorporating habitat fidelity and non-habitat assortative mating. Evol Ecol 10: 187–205

    Article  Google Scholar 

  • Kondrashov AS (1986) Multilocus model of sympatric speciation. III. Computer simulations. Theor Popul Biol 29: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov AS, Mina MV (1986) Sympatric speciation: when is it possible? Biol J Linn Soc 27: 201–223

    Article  Google Scholar 

  • LeSage L (1986) A taxonomie monograph of the Nearctic galerucine genusOphraellaWilcox (Coleóptera: Chrysomelidae). Memoirs of the Entomological Society of Canada No 133. Entomol Soc Canada, Ottawa

    Google Scholar 

  • Liou LW, Price TD (1994) Speciation by reinforcement of premating isolation. Evolution 48: 1451–1459

    Article  Google Scholar 

  • Mackenzie A (1996) A trade:off for host plant utilization in the black bean aphid,Aphis fabae. Evolution 50: 155–162

    Article  Google Scholar 

  • Mallet J (1995) A species definition for the new synthesis. Trends Ecol Evol 10: 294–299

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1988) Toward a new philosophy of biology: observations of an evolutionist. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1994) Reasons for the failure of theories. Philos Sci 61: 529–533

    Article  Google Scholar 

  • Menken SB J, Herrebout WM, Wiebes JT (1991) Small ermine moths (Yponomuta): their host relations and evolution. Annu Rev Entomol 37: 41–66

    Article  Google Scholar 

  • Mitter C, Farrell B, Futuyma DJ (1991) Phylogenetic studies of insect-plant interactions: insights into the genesis of diversity. Trends Ecol Evol 6: 290–293

    Article  PubMed  CAS  Google Scholar 

  • Moya A, Galiana A, Ayala F (1995) Founder-effect speciation theory: failure of experimental evidence. Proc Natl Acad Sci USA 92: 3983–3986

    Article  PubMed  CAS  Google Scholar 

  • Paterson HEH (1985) The recognition concept of species. Species and speciation. In: Vrba ES (ed) Transvaal Museum Monograph, Pretoria, pp 21–29

    Google Scholar 

  • Phipps JB (1983) Biogeographic, taxonomie and cladistic relationships between Asiatic and North AmericanCrataegus. Ann Mo Bot Gard 70: 667–700

    Article  Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Rice WR (1984) Disruptive selection on habitat preference and the evolution of reproductive isolation: simulation studies. Evolution 38: 1251–1260

    Article  Google Scholar 

  • Rice WR, Hostert EE (1993) Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47: 1637–1653

    Article  Google Scholar 

  • Schliewen U, Tautz D, Pääbo S (1994) Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368: 629–632

    Article  PubMed  CAS  Google Scholar 

  • Schlüter D (1996) Ecological causes of adaptive radiation. Am Nat 148: S40–S64

    Article  Google Scholar 

  • Schlüter D, McPhail JD (1992) Ecological character displacement and speciation in sticklebacks. Am Nat 140: 85–108

    Article  PubMed  Google Scholar 

  • Slatkin M (1996) In defense of founder-flush theories of speciation. Am Nat 147: 493–505

    Article  Google Scholar 

  • Smith J J, Bush GL (1997) Phylogeny of the genusRhagoletis(Diptera: Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase II. Mol Phylo Evol 7: 33–43

    Article  CAS  Google Scholar 

  • Stanhope MJ, Hartwick B, Baillie D (1993) Molecular phylogenetic evidence for multiple shifts in habitat preference in the diversification of an amphipod species. Mol Ecol 2: 99–112

    Article  CAS  Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Blackwell, Oxford

    Google Scholar 

  • Tauber CA, Tauber MJ (1989) Sympatric speciation in insects. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, Sunderland, pp 307–344

    Google Scholar 

  • Templeton AR (1987) Species and speciation Evolution 41: 233–235

    Google Scholar 

  • Thorpe WH (1945) The evolutionary significance of habitat selection. J Anim Ecol 14: 67–70

    Article  Google Scholar 

  • Van der Kloet SP (1988) The genusVaccinium in North America. In: Research Branch, Agriculture Canada No 1828, Ottawa

    Google Scholar 

  • Vouidibio J, Capy P, Defaye D, Sandrin E, Csink A, David JR (1989) Short-range genetic structure ofDrosophila melanogasterpopulations in an Afro tropical urban area and its significance. Proc Natl Acad Sci USA 86: 8442–8446

    Article  PubMed  CAS  Google Scholar 

  • Wagner M (1868) Die Darwinsche Theorie und das Migrationsgesetz der Organismen. Dunker und Humbolt, Leipzig

    Google Scholar 

  • Walsh BD (1864) On phytophagic varieties and phytophagic species. Proc Entomol Soc Philadelphia 3: 403–430

    Google Scholar 

  • Yoshihisa A (1991) Host race formation in the gall waspAndricus mukaigawae. Entomol Exp Appi 58: 15–20

    Article  Google Scholar 

  • Zwölfer H (1975) Artbildung und Ökologische Differenzierung berphytophagen Insekten. Verh Dtsch Zool Ges 1975: 394–401

    Google Scholar 

  • Zwölfer H, Bush GL (1984) Sympatrische und parapatrische Artbildung. Z Zool Syst Evolutionsforsch 22: 211–233

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bush, G.L., Smith, J.J. (1997). The Sympatric Origin of Phytophagous Insects. In: Dettner, K., Bauer, G., Völkl, W. (eds) Vertical Food Web Interactions. Ecological Studies, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60725-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60725-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64528-0

  • Online ISBN: 978-3-642-60725-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics