Skip to main content

Thyroid Hormone Synthesis, Plasma Membrane Transport and Metabolism

  • Chapter
Pharmacotherapeutics of the Thyroid Gland

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 128))

Abstract

The most important iodothyronine secreted by the thyroid gland is 3,5,3’,5’-tetraiodothyronine (thyroxine, T4). Thyroxine has little, if any, biological activity, and is converted to the active hormone par excellence, i.e. 3,5,3’-triiodothyronine (T3). In man about 80% of total plasma T3 production is extrathyroidally converted to T3 (see below), while 20% is secreted by the thyroid gland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur JR, Nicol F, Beckett GJ, Trayhurn P (1991) Impairment of iodothyronine 5’deiodinase activity in brown adipose tissue and its acute stimulation by cold in selenium deficiency. Can J Physiol Biochem 69:782–785

    CAS  Google Scholar 

  • Barnett PS, Jones TH, McGregor AM, Banga JP, Sheer D (1993) Regional sublocalization of the human peroxidase gene (TPO) by tritium and fluorescence in situ hybridization to chromosome 2p25-p24. Cytogenet Cell Genet 62:188–189

    PubMed  CAS  Google Scholar 

  • Barter RA, Klaassen CD (1992a) UDP-glucuronosyltransferase inducers reduce thyroid hormone levels in rats by an extrathyroidal mechanism. Toxicol Appl Pharmacol 113:36–42

    CAS  Google Scholar 

  • Barter RA, Klaassen CD (1992b) Rat liver microsomal UDP-glucuronosyltransferase activity toward thyroxine: characterization, induction and form specificity. Toxicol Appl Pharmacol 115:261–267

    CAS  Google Scholar 

  • Becker KB, Schneider MJ, Davey JC, Galton VA (1995) The type III 5-deiodinase in Rana catesbeiana tadpoles is encoded by a thyroid hormone-responsive gene. Endocrinology 136:4424–4431

    PubMed  CAS  Google Scholar 

  • Beckett GJ, Beddows SE, Morrice PC, Nicol F, Arthur JR (1987) Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats. Biochem J 248:443–447

    PubMed  CAS  Google Scholar 

  • Beckett GJ, MacDougall DA, Nicol F, Arthur JR (1989) Inhibition of type I and type II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency. Biochem J 259:887–892

    PubMed  CAS  Google Scholar 

  • Beech SG, Walker SW, Dorrance AM, Arthur JR, Nicole F, Lee D, Beckett GJ (1993) The role of thyroidal type-I iodothyronine deiodinase in tri-iodothyronine production by human and sheep thyrocytes in primary culture. J Endocrinol 136:361–370

    PubMed  CAS  Google Scholar 

  • Beetstra JB, Van Engelen JGM, Karels P, Van der Hoek HJ, De Jong M, Docter R, Krenning EP, Hennemann G, Brouwer A, Visser TJ (1991) Thyroxine and 3,3’,5-triiodothyronine are glucuronidated in rat liver by different uridine diphosphateglucuronyltransferases. Endocrinology 128:741–746

    PubMed  CAS  Google Scholar 

  • Berry MJ, Larsen PR (1992) The role of selenium in thyroid hormone action. Endocr Rev 13:207–219

    PubMed  CAS  Google Scholar 

  • Berry MJ, Larsen PR (1994) Molecular structure and biochemistry of type I iodothyronine deiodinase. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism: molecular biology and alternate pathways. CRC Press, Baco Raton, pp 1–21

    Google Scholar 

  • Berry MJ, Banu L, Larsen PR (1991a) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–440

    CAS  Google Scholar 

  • Berry MJ, Kieffer JD, Harney JW, Larsen PR (1991b) Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J Biol Chem 266:14155–14158

    CAS  Google Scholar 

  • Berry MJ, Kieffer JD, Larsen PR (1991c) Evidence that cysteine, not selenocysteine, is the catalytic site of type II iodothyronine deiodinase. Endocrinology 129:550–552

    CAS  Google Scholar 

  • Berry MJ, Maia AL, Kieffer JD, Harney JW, Larsen PR (1992) Substitution of cysteine for selenocysteine in type I iodothyronine deiodinase reduces the catalytic efficiency of the protein but enhances its translation. Endocrinology 131:1848–1852

    PubMed  CAS  Google Scholar 

  • Björkman U, Ekholm R (1990) Biochemistry of thyroid hormone formation and secretion. In: Greer MA (ed) The thyroid gland, Raven Press, New York, pp 83–125

    Google Scholar 

  • Björkman U, Eckholm R (1992) Hydrogen peroxide generation and its regulation in FRTL-5 and porcine thyroid cells. Endocrinology 130:393–399

    PubMed  Google Scholar 

  • Burchell B, Coughtrie MWH, Jansen PLM (1994) Function and regulation of UDP-glucuronosyltransferase genes in health and disease. Hepatology 20:1622–1630

    PubMed  CAS  Google Scholar 

  • Carvalho DP, Dupuy C, Goren Y, Legue O, Pommier J, Haye B, Virion A (1996) The Ca2+- and reduced nicotinamide adenine dinucleotide phosphate-dependent hydrogen peroxide generating system is induced by thyrotropin in porcine thyroid cells. Endocrinology 137:1007–1012

    PubMed  CAS  Google Scholar 

  • Chambard M, Verrier B, Gabrion J, Mochant J (1983) Polarization of thyroid cells in culture: evidence for the basolateral localization of iodide “pumps” and of the thyroid-stimulating hormone receptor-adenylcyclase complex. J Cell Biol 96:1172–1177

    PubMed  CAS  Google Scholar 

  • Chanoine JP, Safran M, Farwell AP, Tranter P, Ekenbarger DM, Dubord S, Alex S, Arthur JR, Beckett GJ, Braverman LE, Leonard JL (1992) Selenium deficiency and type II 5’-deiodinase regulation in the euthyroid and hyperthyroid rat: evidence of a direct effect of thyroxine. Endocrinology 130:479–484

    Google Scholar 

  • Chanoine JP, Alex S, Stone S, Fang SL, Veronikis I, Leonard JL, Braverman LE (1993) Placental 5-deiodinase activity and fetal thyroid hormone economy are unaffected by selenium deficiency in the rat. Pediat Res 34:288–292

    PubMed  CAS  Google Scholar 

  • Chopra IJ (1994) The role of sulfation and desulfation in thyroid hormone metabolism. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism: molecular biology and alternate pathways. CRC Press, Baco Raton, pp 119–138

    Google Scholar 

  • Chopra IJ, Wu SY, Chua Teco GN, Santini F (1992) A radioimmunoassay of 3,5,3’triiodothyronine sulfate: studies in thyroidal and nonthyroidal diseases, pregnancy, and neonatal life. J Clin Endocrinol Metab 75:189–194

    PubMed  CAS  Google Scholar 

  • Chopra IJ, Santini F, Hurd RE, Chua Teco GN (1993) A radioimmunoassay for measurement of thyroxine sulfate. J Clin Endocrinol Metab 76:145–150

    PubMed  CAS  Google Scholar 

  • Croteau W, Whittemore SL, Schneider MJ, St.Germain DL (1995) Cloning and expression of a cDNA for a mammalian type III iodothyronine deiodinase. J Biol Chem 270:16569–16575

    PubMed  CAS  Google Scholar 

  • Croteau W, Davey JC, Galton VA, St.Germain DL (1996) Cloning of the mammalian type II iodothyronine deiodinase: a selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest 98:405–417

    PubMed  CAS  Google Scholar 

  • Curran PG, DeGroot LJ (1991) The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Endocr Rev 12:135–150

    PubMed  CAS  Google Scholar 

  • Dal G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379:458–460

    Google Scholar 

  • Darras VM, Visser TJ, Berghman LR, Kühn ER (1992) Ontogeny of type I and type III deiodinase activities in embryonic and posthatch chicks: relationship with changes in plasma triiodothyronine and growth hormone levels. Comp Biochem Physiol 103A:131–136

    CAS  Google Scholar 

  • Davey JC, Becker KB, Schneider MJ, St.Germain DL, Galton VA (1995) Cloning of a cDNA for the type II iodothyronine deiodinase. J Biol Chem 270:26786–26789

    PubMed  CAS  Google Scholar 

  • DeGroot LJ, Larsen PR, Hennemann G (1996) The thyroid and its diseases, 6th edn. Churchill Livingstone, New York, p 33

    Google Scholar 

  • De Herder WW, Bonthuis F, Rutgers M, Otten MH, Hazenberg MP, Visser TJ (1987) Effects of inhibition of type I iodothyronine deiodinase and phenol sulfotransferase on the biliary clearance of triiodothyronine in rats. Endocrinology 122:153–157

    Google Scholar 

  • De Herder WW, Hazenberg MP, Pennock-Schröder AM, Oosterlaken AC, Rutgers M, Visser TJ (1989) On the enterohepatic cycle of triiodothyronine in rats: importance of the intestinal microflora. Life Sci 45:849–856

    PubMed  Google Scholar 

  • De Jong M, Docter R, Van der Hoek HJ, Vos RA, Krenning EP, Hennemann G (1992) Transport of T3 into the perfused rat liver and subsequent metabolism are inhibited by fasting. Endocrinology 131:463–470

    PubMed  Google Scholar 

  • De Jong M, Visser TJ, Bernard BF, Docter R, Vos RA, Hennemann G, Krenning EP (1993) Transport and metabolism of iodothyronines in cultured human hepatocytes. J Clin Endocrinol Metab 77:139–143

    PubMed  Google Scholar 

  • De Jong M, Docter R, Van der Hoek H, Krenning EP, Van der Heide H, Quero, Plaisier P, Vos RA, Hennemann G (1994a) Different effects of amiodarone on transport of T4 and T3 into the perfused rat liver. Am J Physiol 266:E44–E49

    Google Scholar 

  • De Jong M, Docter R, Bernard BF, Van der Heyden JTM, Van Toor H, Krenning EP, Hennemann G (1994b) 14 uptake into the perfused rat liver and liver T4 uptake in humans are inhibited by fructose. Am J Physiol 266:E768–E775

    Google Scholar 

  • De Jong M, Docter R, Van der Hoek HJ, Krenning EP, Hennemann G (1994c) Adaptive changes in transmembrane transport and metabolism of triiodothyronine in perfused livers of fed and fasted hypothyroid and hyperthyroid rats. Metabolism 43:1355–1361

    Google Scholar 

  • De Sandro V, Chevrier M, Boddaert A, Melcion C, Cordier A, Richert L (1991) Comparison of the effects of propylthiouracil, amiodarone, diphenylhydantoin, phenobarbital, and 3-methylcholanthrene on hepatic and renal T4 metabolism and thyroid gland function in rats. Toxicol Appl Pharmacol 111:263–278

    PubMed  Google Scholar 

  • De Sandro V, Catinot R, Kriszt W, Cordier A, Richert L (1992) Male rat hepatic UDPglucuronosyltransferase activity toward thyroxine. Activation and induction properties — relation with thyroxine plasma disappearance rate. Biochem Pharmacol 43:1563–1569

    PubMed  Google Scholar 

  • De Vijlder JJM, Dinsart C, Libert F, Geurts van Kessel A, Bikker H, Bolhuis PA, Vassart G (1988) Regional localization of the gene for thyroid peroxidase to human chromosome 2pter → p 12. Cytogenet Cell Genet 47:170–172

    PubMed  Google Scholar 

  • DiStefano JJ, Nguyen TT, Yen YM (1993) Transfer kinetics of 3,5,3’-triiodothyronine and thyroxine from rat blood to large and small intestines, liver, and kidneys in vivo. Endocrinology 132:1735–1744

    PubMed  CAS  Google Scholar 

  • Docter R, Krenning EP (1990) Role of cellular transport systems in the regulation of thyroid hormone bioactivity. In: Greer MA (ed) The thyroid gland. Raven Press, New York, pp 233–254

    Google Scholar 

  • Docter R, Krenning EP, Bernard HF, Hennemann G (1987) Active transport of iodothyronines into human cultured fibroblasts. J Clin Endocrinol Metab 65:624–628

    PubMed  CAS  Google Scholar 

  • Docter R, De Jong M, Van der Hoek HJ, Krenning EP, Hennemann G (1990) Development and use of a mathematical two-pool model of distribution and metabolism of 3,3’,5-triiodothyronine in a recirculating rat liver perfusion system: albumin does not play a role in cellular transport. Endocrinology 126:451–459

    PubMed  CAS  Google Scholar 

  • Docter R, Bernard HF, Van Toor H, Krenning EP, De Jong M (1993) The presence of a gradient of free T4 and T3 over the rat liver cell membrane. J Endocrinol Invest 16 (Suppl 2–6):10

    Google Scholar 

  • Docter R, Friesema ECH, Van Stralen PGJ, Krenning EP, Everts ME, Visser TJ, Hennemann G (1997) Expression of triiodothyronine and triiodothyronine sulfate transport in Xenopus laevis oocytes Endocrinology (in press)

    Google Scholar 

  • Dupuy C, Virion A, Ohayon R, Kaniewski J (1991) Mechanism of H2O2 formation catalyzed by NADPH oxidase in thyroid plasma membrane. J Biol Chem 266:3739–3743

    PubMed  CAS  Google Scholar 

  • Eelkman Rooda SJ, Kaptein E, Van Loon MAC, Visser TJ (1988a) Development of a radioimmunoassay for triiodothyronine sulfate. J Immunoassay 9:125–134

    CAS  Google Scholar 

  • Eelkman Rooda SJ, Van Loon MAC, Bonthuis F, Heusdens FA, Kaptein E, Visser TJ (1988b) Effects of iopanoic acid on the metabolism of T3 in rats. Ann Endocrinol 49:182

    Google Scholar 

  • Eelkman Rooda SJ, Kaptein E, Rutgers M, Visser TJ (1989a) Increased plasma 3,5,3’triiodothyronine sulfate in rats with inhibited type I iodothyronine deiodinase activity, as measured by radioimmunoassay. Endocrinology 124:740–745

    Google Scholar 

  • Eelkman Rooda SJ, Kaptein E, Visser TJ (1989b) Serum triiodothyronine sulfate in man measured by radioimmunoassay. J Clin Endocrinol Metab 69:552–556

    CAS  Google Scholar 

  • Eelkman Rooda SJ, Otten MH, Van Loon MAC, Kaptein E, Visser TJ (1989c) Metabolism of T3 by rat hepatocytes. Endocrinology 125:2187–2197

    CAS  Google Scholar 

  • Emi Y, Ikushiro SI, Iyanagi T (1995) Drug-responsive and tissue-specific alternative expression of multiple first exons in rat UDP-glucuronosyltransferase family 1 (UGT1) gene complex. J Biochem 117:392–399

    PubMed  CAS  Google Scholar 

  • Engler D, Burger AG (1984) The deiodination of iodothyronines and their derivatives in man. Endocr Rev 5:151–184

    PubMed  CAS  Google Scholar 

  • Ericson LE, Johanson V, Molne J et al (1990) Intracellular transport and cell surface expression of thyroperoxidase. In: Carayon P, Ruf J (eds) Thyroperoxidase and thyroid autoimmunity. John Libbey Eurotext, London, pp 107–116

    Google Scholar 

  • Everts ME, Docter R, Van Buuren JCJ, Van Koetsveld PM, Hofland LJ, De Jong M, Krenning EP, Hennemann G (1993) Evidence for carrier-mediated uptake of triiodothyronine in cultured anterior pituitary cells of euthyroid rats. Endocrinology 131:1278–1285

    Google Scholar 

  • Everts ME, Docter R, Moerings EPCM, Van Koetsveld PM, Visser TJ, De Jong M, Krenning EP, Hennemann G (1994a) Uptake of thyroxine in cultured anterior pituitary cells of euthyroid rats. Endocrinology 134:2490–2497

    CAS  Google Scholar 

  • Everts ME, Visser TJ, Van Buuren JCJ, Docter R, Krenning EP, Hennemann G (1994b) Uptake of triiodothyronine sulfate and suppression of thyrotropin secretion in cultured anterior pituitary cells. Metabolism 43:1282–1286

    CAS  Google Scholar 

  • Francis-Lang H, Brice M, Martin U, DiLauro R (1990) The thyroid specific nuclear factor, TTF-1, binds to the rat thyroperoxidase promotor. In: Carayon P, Ruf J (eds) Thyroperoxidase and thyroid autoimmunity. John Libbey Eurotext, London, pp 25–32

    Google Scholar 

  • Gardner DF, Kaplan MM, Stanley CA, Utiger RD (1979) Effect of triiodothyronine replacement on the metabolic and pituitary responses to starvation. N Engl J Med 300:579–584

    PubMed  CAS  Google Scholar 

  • Gong DW, Murayama N, Yamazoe Y, Kato R (1992) Hepatic triiodothyronine sulfation and its regulation by growth hormone and triiodothyronine in rats. J Biochem. 112:112–116

    PubMed  CAS  Google Scholar 

  • Green WL (1994) Ether-link cleavage of iodothyronines. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism: molecular biology and alternate pathways. CRC Press, Baco Raton, pp 199–221

    Google Scholar 

  • Halmi NS, Granner DK, Doughman DJ, Peters BH, Müller G (1960) Biphasic effect of TSH on thyroidal iodide collection in rats. Endocrinology 67:70–81

    PubMed  CAS  Google Scholar 

  • Halperin Y, Shapiro LE, Surks MI (1994) Down-regulation of type II L-thyroxine 5’monodeiodinase in cultured GC cells: different pathways of regulation by Ltriiodothyronine and 3,3’,5’-triiodo-L-thyronine. Endocrinology 135:1464–1469

    PubMed  CAS  Google Scholar 

  • Halpern J, Hinkle PM (1982) Evidence for an active step in thyroid hormone transport to nuclei: drug inhibition of L-125I-triiodothyronine binding to nuclear receptors in rat pituitary tumor cells. Endocrinology 110:1070–1075

    PubMed  CAS  Google Scholar 

  • Hays MT (1988) Thyroid hormone and the gut. Endocr Res 14:203–224

    PubMed  CAS  Google Scholar 

  • Hays MT, McGuire RA, Hoogeveen JT, Diezeraad KN (1980) Measurement method for radioactive thyroxine, triiodothyronine, iodide, and iodoprotein in samples with low activity. J Nucl Med 21:225–232

    PubMed  CAS  Google Scholar 

  • Hegedus L, Hansen JM, Lühdorf K, Perrild H, Feldt-Rasmussen U, Kampmann JP (1985) Increased frequency of goitre in epileptic patients on long-term phenytoin or carbamazepine treatment. Clin Endocrinol 23:423–429

    CAS  Google Scholar 

  • Hennemann G, Krenning EP, Polhuis M, Mol JA, Bernard HF, Visser TJ, Docter R (1986) Carrier-mediated transport of thyroid hormones into rat hepatocytes is rate limiting in total cellular uptake. Endocrinology 119:1870–1872

    PubMed  CAS  Google Scholar 

  • Hennemann G (ed) (1986) Thyroid hormone metabolism. Marcel Dekker, New York

    Google Scholar 

  • Hennemann G, Vos RA, De Jong M, Krenning EP, Docter R (1993) Decreased peripheral 3,5,3’-triiodothyronine (T3) production from thyroxine (T4): a syndrome of impaired thyroid hormone activation due to transport inhibition of T4 into T3-producing tissues. J Clin Endocrinol Metab 77:1431–1435

    PubMed  CAS  Google Scholar 

  • Hinton RH, Mitchell FE, Mann A, Chescoe D, Price SC, Nunn A, Grasso P, Bridges JW (1986) Effects of phthalic esters on the liver and thyroid. Environ Health Perspect 70:195–210

    PubMed  CAS  Google Scholar 

  • Homma H, Kawai H, Kubota M, Matsui M (1992) Large deletion of androsterone UDP-glucuronosyltransferase gene in the inherited deficient strain of Wistar rats. Biochim Biophys Acta 1138:34–40

    PubMed  CAS  Google Scholar 

  • Hurd RE, Santini F, Lee B, Naim P, Chopra IJ (1993) A study of the 3,5,3’-triiodothyronine sulfation activity in the adult and the fetal rat. Endocrinology 133:1951–1955

    PubMed  CAS  Google Scholar 

  • Ishii H, Inada M, Tanaka K, Mashio Y, Naito K, Nishikawa M, Imura H (1981) Triiodothyronine generation from thyroxine in human thyroid: enhanced conversion in Graves’ thyroid tissue. J Clin Endocrinol Metab 52:1211–1217

    PubMed  CAS  Google Scholar 

  • Ishii H, Inada M, Tanaka K, Mashio Y, Naito K, Nishikawa M, Matsuzuka F, Kuma K, Imura H (1983) Induction of outer and inner ring monodeiodinases in human thyroid gland by thyrotropin. J Clin Endocrinol Metab 57:500–505

    PubMed  CAS  Google Scholar 

  • Isojärvi JIT, Pakarinen AJ, Myllylä VV (1992) Thyroid function with antiepileptic drugs. Epilepsia 33:142–148

    PubMed  Google Scholar 

  • Jennings AS (1984) Regulation of hepatic triiodothyronine production in the streptozotocin-induced diabetic rat. Am J Physiol 247:E526–E533

    PubMed  CAS  Google Scholar 

  • Jennings AS, Ferguson DC, Utiger RD (1979) Regulation of the conversion of thyroxine to triiodothyronine in the perfused rat liver. J Clin Invest 64:1614–1623

    PubMed  CAS  Google Scholar 

  • Kaiser CA, Seydoux J, Giacobino JP, Girardier L, Burger AG (1988) Increased plasma clearance rate of thyroxine despite decreased 5’-monodeiodination: study with a peroxisome proliferator in the rat. Endocrinology 122:1087–1093

    PubMed  CAS  Google Scholar 

  • Kaplan MM, Utiger RD (1978) Iodothyronine metabolism in rat liver homogenates. J Clin Invest 61:459–471

    PubMed  CAS  Google Scholar 

  • Kaplan MM, Visser TJ, Yaskoski KA, Leonard JL (1983) Characteristics of iodothyronine tyrosyl ring deiodination by rat cerebral cortical microsomes. Endocrinology 112:35–42

    PubMed  CAS  Google Scholar 

  • Kaptein EM, Robinson WJ, Grieb D, Nicoloff JT (1982) Peripheral serum thyroxine, triiodothyronine and reverse triiodothyronine kinetics in the low-thyroxine state of acute non-thyroidal illnesses. J Clin Invest 69:526–535

    PubMed  CAS  Google Scholar 

  • Kaptein EM, Kaptein JS, Chang EI, Egodage PM, Nicoloff JT, Massry SG (1987) Thyroxine transfer and distribution in critical non-thyroidal illnesses, chronic renal failure, and chronic ethanol abuse. J Clin Endocrinol Metab 65:606–623

    PubMed  CAS  Google Scholar 

  • Kimura S, Hong YS, Kotani I, Ohtaki S, Kikkawa F (1989) Structure of the human thyroid peroxidase gene: comparison and relationship to the human myeloperoxidase gene. Biochemistry 28:4481–4489

    PubMed  CAS  Google Scholar 

  • Kimura T, Okajima F, Sho K, Kobayashi I, Kondo Y (1995) Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3’,5’-monophosphate, but by Cat2+ signalling followed by phospholipase-A2 activation and potentiated by an adenosine derivative. Endocrinology 136:116–123

    PubMed  CAS  Google Scholar 

  • Kinlaw WB, Schwartz HL, Oppenheimer JH (1985) Decreased serum triiodothyronine in starving rats is due primarily to diminished thyroidal secretion of thyroxine. J Clin Invest 75:1238–1241

    PubMed  CAS  Google Scholar 

  • Köhrle J, Hesch RD, Leonard JL (1991) Intracellular pathways of iodothyronine metabolism. In: Braverman LE, Utiger RD (eds) The thyroid. Lippincott, Philadelphia, pp 144–189

    Google Scholar 

  • Kostrouch Z, Munari-Silem Y, Rajas F, Bernier-Valentin F, Rousset B (1991) Thyroglobulin internalized by thyrocytes passes through early and late endosomes. Endocrinology 129:2202–2211

    PubMed  CAS  Google Scholar 

  • Kostrouch Z, Bernier-Valentin F, Munari-Silem Y, Rajas F, Rabilloud R, Rousset B (1993) Thyroglobulin molecules internalized by thyrocytes are sorted in early endosomes and partially recycled back to the follicular lumen. Endocrinology 132:2645–2653

    PubMed  CAS  Google Scholar 

  • Kragie L (1994) Membrane iodothyronine transporters, part I: Review of physiology. Endocrinol Res 20:319–341

    CAS  Google Scholar 

  • Krenning EP, Docter R, Bernard HF, Visser TJ, Hennemann G (1981) Characteristics of active transport of thyroid hormone into rat hepatocytes. Biochim Biophys Acta 676:314–32

    PubMed  CAS  Google Scholar 

  • Krenning EP, Docter R, Bernard HF, Visser TJ, Hennemann G (1982) Decreased transport of thyroxine (T4), 3,3’,5-triiodothyronine (T3) and 3,3’,5’-triiodothyronine (rT3) into rat hepatocytes in primary culture due to decrease of cellular ATP content and various drugs. FEBS Lett 140:229–233

    PubMed  CAS  Google Scholar 

  • Krenning EP, Docter R, Visser TJ, Hennemann G (1983) Plasma membrane transport of thyroid hormone: its possible pathophysiological significance. J Endocrinol Invest 6:59–66

    PubMed  CAS  Google Scholar 

  • Lai C-S, Korytowski W, Niu C-H, Cheng S-Y (1985) Transverse motion of spin-labeled 3,3’,5-triiodo-L-thyronine in phospholipid bilayers. Biochem Biophys Res Commun 131:408–412

    PubMed  CAS  Google Scholar 

  • Lamas L, Anderson PC, Fox JW, Dunn JT (1989) Consensus sequences for early iodination and hormogenesis in human thyroglobulin. J Biol Chem 264:13541–13545

    PubMed  CAS  Google Scholar 

  • Langley AE, Pilcher GD (1985) Thyroid, bradycardic and hypothermic effects of perfluoro-n-decanoic acid. J Toxicol Environ Health 15:485–491

    PubMed  CAS  Google Scholar 

  • Larsen PR, Berry MJ (1995) Nutritional and hormonal regulation of thyroid hormone deiodinases. Annu Rev Nutr 15:323–352

    PubMed  CAS  Google Scholar 

  • Larsen PR, JE Silva, Kaplan MM (1981) Relationship between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr Rev 2:87–102

    PubMed  CAS  Google Scholar 

  • Laurberg PM, Boye N (1982) Outer and inner ring monodeiodination of thyroxine by dog thyroid and liver: a comparative study using a particulate cell fraction. Endocrinology 110:2124–2130

    PubMed  CAS  Google Scholar 

  • Leonard JL, Visser TJ (1986) Biochemistry of deiodination. In: Hennemann G (ed) Thyroid hormone metabolism. Marcel Dekker, New York, pp 189–229

    Google Scholar 

  • Leonard JL, Safran M (1994) Hormonal regulation of type II iodothyronine deiodinase in the brain. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism: molecular biology and alternate pathways. CRC Press, Baco Raton, pp 23–44

    Google Scholar 

  • Lim C-F, Bernard BF, De Jong M, Docter R, Krenning EP, Hennemann G (1993a) A furan fatty acid and indoxyl sulphate are the putative inhibitors of thyroxine hepatocytes transport in uremia. J Clin Endocrinol Metab 76:318–324

    CAS  Google Scholar 

  • Lim C-F, Docter R, Visser TJ, Krenning EP, Bernard BF, Van Toor H, De Jong M, Hennemann G (1993b) Inhibition of thyroxine transport into cultured rat hepatocytes by serum of non-uremic critically-ill patients: effects of bilirubin and nonesterified fatty acids. J Clin Endocrinol Metab 76:1165–1172

    CAS  Google Scholar 

  • Lim C-F, Docter R, Krenning EP, Van Toor H, Bernard BF, De Jong M, Hennemann G (1994) Transport of thyroxine into cultured hepatocytes: effects of mild non-thyroidal illness and calorie restriction in obese subjects. Clin Endocrinol 40:79–85

    CAS  Google Scholar 

  • LoPresti JS, Mizuno L, Nimalysuria A, Anderson KP, Spencer CA, Nicoloff JT (1991) Characteristics of 3,5,3’-triiodothyronine sulfate metabolism in euthyroid man. J Clin Endocrinol Metab 73:703–709

    PubMed  CAS  Google Scholar 

  • Lueprasitsakul W, Fang SL, Alex S, Braverman LE (1991) Effect of the cardiac inotropic drug, OPC 8212, on pituitary-thyroid function in the rat. Endocrinology 128:2709–2714

    PubMed  CAS  Google Scholar 

  • Magnusson RP, Taurog A, Dorris ML (1984) Mechanism of iodide-dependent catalytic activity of thyroid peroxidase and lactoperoxidase. J Biol Chem 259:197–205

    PubMed  CAS  Google Scholar 

  • Maia AL, Berry MJ, Sabbag R, Harney JW, Larsen PR (1995) Structural and functional differences in the diol gene in mice with inherited type 1 deiodinase deficiency. Mol Endocrinol 9:969–980

    PubMed  CAS  Google Scholar 

  • Mandel SJ, Berry MJ, Kieffer JD, Harney JW, Warne RL, Larsen PR (1992) Cloning and in vitro expression of the human selenoprotein, type I iodothyronine deiodinase. J Clin Endocrinol Metab 75:1133–1139

    PubMed  CAS  Google Scholar 

  • Marriq C, Arnand C, Rolland M, Lissitsky S (1980) An approach to the structure of thyroglobulin. Hormone-forming sequences in porcine thyroglobulin. Eur J Biochem 111:33–47

    PubMed  CAS  Google Scholar 

  • Masmoudi T, Planells R, Mounie J, Artur Y, Magdalou J, Goudonnet H (1996) Opposite regulation of bilirubin and 4-nitrophenol UDP-glucuronosyltransferase mRNA levels by 3,3’,5-triiodo-L-thyronine in rat liver. FEBS Lett 379:181–185

    PubMed  CAS  Google Scholar 

  • McClain RM (1989) The significance of hepatic microsomal enzyme induction and altered thyroid function in rats: implications for thyroid gland neoplasia. Toxicol Pathol 17:294–306

    PubMed  CAS  Google Scholar 

  • McClain RM, Levin AA, Posch R, Downing JC (1989) The effect of phenobarbital on the metabolism and excretion of thyroxine in rats. Toxicol Appl Pharmacol 99:216–228

    PubMed  CAS  Google Scholar 

  • McIntosh K, Berdanier CD (1992) Influence of dehydroepiandrosterone (DHEA) on the rat thyroid hormone status of BHE/cdb rats. J Nutr Biochem 3:194–199

    CAS  Google Scholar 

  • Meinhold H, Campos-Barros A, Walzog B, Köhler R, Müller F, Behne D (1993) Effects of selenium and iodine deficiency on type I, type II and type III iodothyronine deiodinases and circulating thyroid hormones in the rat. Exp Clin Endocrinol 101:87–93

    PubMed  CAS  Google Scholar 

  • Mol JA, Krenning EP, Docter R, Rozing J, Hennemann G (1986) Inhibition of iodothyronine transport into rat liver cells by a monoclonal antibody. J Biol Chem 261:7640–7643

    PubMed  CAS  Google Scholar 

  • Mol K, Kaptein E, Darras VM, De Greef WJ, Kühn E, Visser TJ (1993) Different thyroid hormone-deiodinating enzymes in tilapia (Oreochromis niloticus) liver and kidney. FEBS Lett 321:140–143

    PubMed  CAS  Google Scholar 

  • Moreno M, Kaptein E, Goglia F, Visser TJ (1994) Rapid glucuronidation of tri-and tetraiodothyroacetic acid to ester glucuronides in human liver and to ether glucuronides in rat liver. Endocrinology 135:1004–1009

    PubMed  CAS  Google Scholar 

  • Morreale de Escobar G, Escobar del Rey F (1967) Extrathyroid effects of some antithyroid drugs and their metabolic consequences. Rec Progr Horm Res 23:87–137

    PubMed  CAS  Google Scholar 

  • Nakamura M, Yamazaki I, Nakagawa H, Ohtaki S (1983) Steady state kinetics and regulation of thyroid peroxidase-catalyzed iodination. J Biol Chem 258:3837–38421

    PubMed  CAS  Google Scholar 

  • Namba H, Yamashita S, Morita S, Villadolid MC, Kimura H, Yokoyama N, Izumi M, Ishikawa N, Ito K, Nagataki S (1993) Retinoic acid inhibits human thyroid peroxidase and thyroglobulin gene expression in cultured human thyrocytes. J Endocrinol Invest 16:87–93

    PubMed  CAS  Google Scholar 

  • Nunez J, Pommier J (1982) Formation of thyroid hormones. Vitam Horm 39:175–229

    PubMed  CAS  Google Scholar 

  • Ohnhaus EE, Studer H (1983) A link between liver microsomal enzyme activity and thyroid hormone metabolism in man. Br J Clin Pharmacol 15:71–76

    Google Scholar 

  • Ohtaki S, Mashimo K, Yamazaki I (1973) Hydrogen peroxide generating system in hog thyroid microsomes. Biochim Biophys Acta 292:825–833

    CAS  Google Scholar 

  • Owens IS, Ritter JK (1992) The novel bilirubin/phenol UDP-glucuronosyltransferase UGT1 gene locus: implications for multiple nonhemolytic familial hyperbilirubinemia phenotypes. Pharmacogenetics 2:93–108

    PubMed  CAS  Google Scholar 

  • Palumbo G, Gentil F, Condorelli GL, Salvatore G (1990) The earliest site of iodination in thyroglobulin is residue number 5. J Biol Chem 265:8887–8892

    PubMed  CAS  Google Scholar 

  • Polk DH (1995) Thyroid hormone metabolism during development. Reprod Fertil Dev 7:469–477

    PubMed  CAS  Google Scholar 

  • Polk D, Wu SY, Fisher DA (1994) Alternate pathways of thyroid hormone metabolism in developing mammals. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism: molecular biology and alternate pathways. CRC Press, Baco Raton, pp 223–243

    Google Scholar 

  • Pontecorvi A, Lakshmanan M, Robbins J (1987) Intracellular transport of 3,5,3’- triiodo-L-thyronine in rat skeletal myoblasts. Endocrinology 121:2145–2152

    PubMed  CAS  Google Scholar 

  • Raspé E, Dumont JE (1995) Tonic modulation of dog thyrocyte H2O2 generation and I-uptake by thyrotropin through the cyclic adenosine 3’S’-monophosphate cascade. Endocrinology 136:965–973

    PubMed  Google Scholar 

  • Rawitch AB, Pollock G, Yang SX, Taurog A (1990) The location and nature of the N-linked oligosaccharide units in porcine thyroid peroxidase: studies on the tryptic glycopeptides. In: Carayon P, Ruf J (eds) Thyroperoxidase and thyroid autoimmunity. John Libbey Eurotext, London, pp 69–76

    Google Scholar 

  • Rosenbaum RL, Maturlo SJ, Surks MI (1980) Changes in thyroidal economy in rat bearing transplantable Walker 256 carcinomas. Endocrinology 106:1386–1391

    PubMed  CAS  Google Scholar 

  • Rousset B, Mornex R (1991) The thyroid hormone secretory pathway — current dogmas and alternative hypotheses. Mol Cell Endocrinol 78:C89–C93

    PubMed  CAS  Google Scholar 

  • Rousset B, Selmi S, Bornet H, Bourgeat P, Rabilloud R, Munari-Silem Y (1989) Thyroid hormone residues are released from thyroglobulin with only limited alteration of the thyroglobulin structure. J Biol Chem 254:12620–12626

    Google Scholar 

  • Roy Chowdhury J, Roy Chowdhury N, Moscioni AD, Tukey R, Tephley TR, Arias IM (1983) Differential regulation by triiodothyronine of substrate-specific uridine diphosphoglucuronate glucuronosyl transferases in rat liver. Biochim Biophys Acta 761:58–65

    Google Scholar 

  • Rutgers M, Bonthuis F, De Herder WW, Visser TJ (1987) Accumulation of plasma triiodothyronine sulfate in rats treated with propylthiouracil. J Clin Invest 80:758–762

    PubMed  CAS  Google Scholar 

  • Rutgers M, Heusdens FA, Bonthuis F, De Herder WW, Hazenberg MP, Visser TJ (1989a) Enterohepatic circulation of triiodothyronine (T3) in rats: importance of the microflora for the liberation and reabsorption of T3 from biliary T3 conjugates. Endocrinology 125:2822–2830

    CAS  Google Scholar 

  • Rutgers M, Pigmans IGAJ, Bonthuis F, Docter R, Visser TJ (1989b) Effects of propylthiouracil on the biliary clearance of thyroxine (T4) in rats: decreased excretion of 3,5,3’-triiodothyronine glucuronide and increased excretion of 3,3’,5’triiodothyronine glucuronide and T4 sulfate. Endocrinology 125:2175–2186

    CAS  Google Scholar 

  • Rutgers M, Heusdens FA, Visser TJ (1991) Deiodination of iodothyronine sulfamates by rat liver microsomes. Endocrinology 129:1375–1381

    PubMed  CAS  Google Scholar 

  • Safran M, Leonard JL (1991) Comparison of the physicochemical properties of type I and type II iodothyronine 5’-deiodinase. J Biol Chem 266:3233–3238

    PubMed  CAS  Google Scholar 

  • Safran M, Farwell AP, Leonard JL (1991) Evidence that type II 5’ deiodinase is not a selenoprotein. J Biol Chem 266:13477–13480

    PubMed  CAS  Google Scholar 

  • Saito K, Kaneko H, Sato K, Yoshitake A, Yamada H (1991) Hepatic UDPglucuronyltransferase(s) activity toward thyroid hormones in rats: induction and effects on serum thyroid hormone levels following treatment with various enzyme inducers. Toxicol Appl Pharmacol 111:99–106

    PubMed  CAS  Google Scholar 

  • Salvatore D, Low SC, Berry MJ, Maia AL, Harney JW, Croteau W, St.Germain DL, Larsen PR (1995) Type 3 iodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme. J Clin Invest 96:2421–2430

    PubMed  CAS  Google Scholar 

  • Salvatore D, Bartha T, Harney JW, Larsen PR (1996) Molecular biological and biochemical characterization of the human type 2 selenodeiodinase. Endocrinology 137:3308–3315

    PubMed  CAS  Google Scholar 

  • Samson M, Osty J, Blondeau JP (1993) Identification by photoaffinitylabeling of a membrane thyroid hormone-binding protein associated with the triiodothyronine transport system in rat erythrocytes. Endocrinology 132:2470–2476

    PubMed  CAS  Google Scholar 

  • Sanders JE, Eigenberg DA, Bracht LJ, Wang WR, Van Zwieten MJ (1988) Thyroid and liver trophic changes in rats secondary to liver microsomal enzyme induction caused by an experimental leukotriene antagonist (L-649,923). Toxicol Appl Pharmacol 95:378–387

    PubMed  CAS  Google Scholar 

  • Santini F, Chopra IJ, Hurd RE, Solomon DH, Chua Teco GN (1992a) A study of the characteristics of the rat placental iodothyronine 5-monodeiodinase: evidence that it is distinct from the rat hepatic iodothyronine 5’-monodeiodinase. Endocrinology 130:2325–2332

    CAS  Google Scholar 

  • Santini F, Chopra IJ, Wu SY, Solomon DH, Chua Teco GN (1992b) Metabolism of 3,5,3’-triiodothyronine sulfate by tissues of the fetal rat:a consideration of the role of desulfation of 3,5,3’-triiodothyronine sulfate as a source of T3. Pediatr Res 31:541–544

    CAS  Google Scholar 

  • Santini F, Hurd RE, Chopra IJ (1992c) A study of metabolism of deaminated and sulfoconjugated iodothyronines by rat placental iodothyronine 5-monodeiodinase. Endocrinology 131:1689–1694

    CAS  Google Scholar 

  • Santini F, Hurd RE, Lee B, Chopra IJ (1993) Thyromimetic effects of 3,5,3’-triiodothyronine sulfate in hypothyroid rats. Endocrinology 133:105–110

    PubMed  CAS  Google Scholar 

  • Schachter D (1984) Fluidity and function of hepatocyte plasma membranes. Hepatology 4:140–151

    PubMed  CAS  Google Scholar 

  • Sekura RD, Sato K, Cahnmann HJ, Robbins J, Jakoby WB (1981) Sulfate transfer to thyroid hormones and their analogs by hepatic aryl sulfotransferase. Endocrinology 108:454–456

    PubMed  CAS  Google Scholar 

  • Semler DE, Chengelis CP, Radzialowsky FM (1989) The effects of chronic ingestion of spironolactone on serum thyrotropin and thyroid hormone in the male rat. Toxicol Appl Pharmacol 98:263–268

    PubMed  CAS  Google Scholar 

  • Sharifi J, St.Germain DL (1992) The cDNA for the type I iodothyronine 5’-deiodinase encodes an enzyme manifesting both high Km and low Km activity. J Biol Chem 267:12539–12544

    PubMed  CAS  Google Scholar 

  • Siegrist-Kaiser CA, Burger AG (1994) Modification of the side chain of thyroid hormone. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism: molecular biology and alternate pathways. CRC Press, Baco Raton, pp 175–198

    Google Scholar 

  • Spahn-Langguth H, Benet LZ (1992) Acyl glucuronides revisited: is the glucuronidation process a toxification as well as a detoxification mechanism? Drug Metab Rev 24:5–48

    PubMed  CAS  Google Scholar 

  • Spaulding SW (1994) Bioactivities of conjugated iodothyronines. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism: molecular biology and alternate pathways. CRC Press, Baco Raton, pp 139–153

    Google Scholar 

  • Stanbury BJ, Morris ML (1958) Deiodination of diiodotyrosine by cell-free systems. J Biol Chem 233:106–108

    PubMed  CAS  Google Scholar 

  • St.Germain DL (1994) Biochemical study of type III iodothyronine deiodinase. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism: molecular biology and alternate pathways. CRC Press, Baco Raton, pp 45–66

    Google Scholar 

  • St.Germain DL, Schwartzman RA, Croteau W, Kanamori A, Wang Z, Brown DD, Galton VA (1994) A thyroid hormone-regulated gene in Xenopus laevis encodes a type III iodothyronine 5-deiodinase. Proc Natl Acad Sci USA 91:7767–7771,11282

    PubMed  CAS  Google Scholar 

  • Stitzer LK, Jacquez JA (1975) Neutral amino acid transport pathways in uptake of L-thyroxine by Ehrlich ascites cells. Am J Physiol 229:172–177

    PubMed  CAS  Google Scholar 

  • Taurog A (1970) Thyroid peroxidase-catalyzed iodination of thyroglobulin: inhibition of excess iodide. Arch Biochem Biophys 139:212–220

    PubMed  CAS  Google Scholar 

  • Toyoda N, Nishikawa M, Horimoto M, Yoshikawa N, Mori Y, Yoshimora M, Masaka M, Tanaka K, Inada M (1990) Graves’ immunoglobulin G stimulates iodothyronine 5’ deiodinating activity in FRTL-5 rat thyroid cells. J Clin Endocrinol Metab 70:1506–1511

    PubMed  CAS  Google Scholar 

  • Toyoda N, Nishikawa M, Mori Y, Gondou A, Ogawa Y, Yonemoto T, Yoshimara M, Masaki H, Inada M (1992) Thyrotropin and triiodothyronine regulate iodothyronine 5’-deiodinase messenger ribonucleic acid levels in FRTL-5 rat thyroid cells. Endocrinology 131:389–394

    PubMed  CAS  Google Scholar 

  • Toyoda N, Berry MJ, Harney JW, Larsen PR (1995a) Topological analysis of the integral membrane protein, type I iodothyronine deiodinase. J Biol Chem 270:12310–12318

    CAS  Google Scholar 

  • Toyoda N, Harney JW, Berry MJ, Larsen PR (1995b) Identification of critical amino acids for 3,3’,5’-triiodothyronine deiodination by human type I deiodinase based on comparative functional-structural analyses of the human, dog and rat enzymes. J Biol Chem 269:20329–20334

    Google Scholar 

  • Van der Heyden JTM, Docter R, Van Toor H, Wilson JHP, Hennemann G, Krenning EP (1986) Effects of caloric deprivation on thyroid hormone tissue uptake and generation of low T3 syndrome. Am J Physiol 251:E156–E163

    PubMed  Google Scholar 

  • Van Raaij JAGM, Kaptein E, Visser TJ, Van den Berg KJ (1993) Increased glucuronidation of thyroid hormone in hexachlorobenzene-treated rats. Biochem Pharmacol 45:627–631

    PubMed  Google Scholar 

  • Van Steenbergen W, Fevery J, De Vos R, Leyten R, Heirwegh KPM, De Groote J (1989) Thyroid hormones and the hepatic handling of bilirubin. I. Effects of hypothyroidism and hyperthyroidism on the hepatic transport of bilirubin mono-and diconjugates in the Wistar rat. Hepatology 9:314–321

    PubMed  Google Scholar 

  • Visser TJ (1988) Metabolism of thyroid hormone. In: Cooke BA, King RJB, Van der Molen HJ (eds) Hormones and their actions, part I. Elsevier, Amsterdam, pp 81103

    Google Scholar 

  • Visser TJ (1990) Importance of deiodination and conjugation in the hepatic metabolism of thyroid hormone. In:Greer MA (ed) The thyroid gland. Raven Press, New York, pp 255–283

    Google Scholar 

  • Visser TJ (1994a) Sulfation and glucuronidation pathways of thyroid hormone metabolism. In: Wu SY, Visser TJ (eds) Thyroid hormone metabolism:molecular biology and alternate pathways. CRC Press, Baco Raton, pp 85–117

    Google Scholar 

  • Visser TJ (1994b) Role of sulfation in thyroid hormone metabolism. Chem Biol Interact 92:293–303

    CAS  Google Scholar 

  • Visser TJ, Fekkes D, Docter R, Hennemann G (1979) Kinetics of enzymic reductive deiodination of iodothyronines. Biochem J 179:489–495

    PubMed  CAS  Google Scholar 

  • Visser TJ, Leonard JL, Kaplan MM, Larsen PR (1982) Kinetic evidence suggesting two mechanisms for iodothyronine 5’-deiodination in rat cerebral cortex. Proc Natl Acad Sci USA 79:5080–5084

    PubMed  CAS  Google Scholar 

  • Visser TJ, Kaptein E, Terpstra OT, Krenning EP (1988) Deiodination of thyroid hormone by human liver. J Clin Endocrinol Metab 67:17–24

    PubMed  CAS  Google Scholar 

  • Visser TJ, Kaptein E, Harpur ES (1991) Differential expression and ciprofibrate induction of hepatic UDP-glucuronyltransferases for thyroxine and triiodothyronine in Fischer rats. Biochem Pharmacol 42:444–446

    PubMed  CAS  Google Scholar 

  • Visser TJ, Kaptein E, Gijzel AL, De Herder WW, Ebner T, Burchell B (1993a) Glucuronidation of thyroid hormone by human bilirubin and phenol UDPglucuronyltransferase isoenzymes. FEBS Lett 324:358–360

    CAS  Google Scholar 

  • Visser TJ, Kaptein E, Van Raaij JAGM, Tjong Tjin Joe C, Ebner T, Burchell B (1993b) Multiple UDP-glucuronyltransferases for the glucuronidation of thyroid hormone with preference for 3,3’,5’-triiodothyronine (reverse T3). FEBS Lett 315:65–68

    CAS  Google Scholar 

  • Visser TJ, Kaptein E, Van Toor H, Van Raaij JAGM, Van den Berg KJ, Tjong Tjin Joe C, Van Engelen JGM, Brouwer A (1993c) Glucuronidation of thyroid hormone in rat liver: effects of in vivo treatment with microsomal enzyme inducers and in vitro assay conditions. Endocrinology 133:2177–2186

    CAS  Google Scholar 

  • Visser TJ, Kaptein E, Gijzel A, De Herder WW, Cannon ML, Bonthuis F, De Greef WJ (1996) Effects of thyroid status and thyrostatic drugs on hepatic glucuronidation of iodothyronines and other substrates in rats. Induction of phenol UDP-glucuronyltransferase by methimazole. Endocrine 4:79–85

    PubMed  CAS  Google Scholar 

  • Vos RA, De Jong M, Docter R, Van Toor H, Bernard BF, Krenning EP, Hennemann G (1991) Morbidity-dependent thyroid hormone transport inhibition by serum of patients with non-thyroidal illness (NTI) in rat hepatocytes and in the perfused rat liver. In: Gordon A, Gross J, Hennemann G (eds) Progress in thyroid research. Balkema AA, Rotterdam, The Netherlands, pp 693–696

    Google Scholar 

  • Vos RA, De Jong M, Bernard BF, Docter R, Krenning EP, Hennemann G (1995) Impaired thyroxine and 3,5,3’-triiodothyronine handling by rat hepatocytes in the presence of serum of patients with non-thyroidal illness. J Clin Endocrinol Metab 80:2364–2370

    PubMed  CAS  Google Scholar 

  • Wolff J (1960) Thyroidal iodide transport. I. Cardiac glycosides and the role of potassium. Biochim Biophys Acta 38:316–324

    PubMed  CAS  Google Scholar 

  • Woodbury DM, Woodbury JW (1963) Correlation of micro-electrode potential recordings with histology of rat and guinea pig thyroid glands. J Physiol (London) 169:553–567

    CAS  Google Scholar 

  • Wu SY, Huang WS, Polk D, Florsheim WH, Green WL, Fisher DA (1992a) Identification of thyroxine sulfate (T4S) in human serum and amniotic fluid by a novel T4S radioimmunoassay. Thyroid 2:101–105

    CAS  Google Scholar 

  • Wu SY, Polk D, Wong S, Reviczky A, Vu R, Fisher DA (1992b) Thyroxine sulfate is a major thyroid hormone metabolite and a potential intermediate in the monodeiodination pathways in fetal sheep. Endocrinology 131:1751–1756

    CAS  Google Scholar 

  • Wu SY, Huang WS, Polk D, Chen WL, Reviczky A, Williams J, Chopra IJ, Fisher DA (1993a) The development of a radioimmunoassay for reverse triiodothyronine sulfate in human serum and amniotic fluid. J Clin Endocrinol Metab 76:1625–1630

    CAS  Google Scholar 

  • Wu SY, Polk DH, Huang WS, Reviczky A, Wang K, Fisher DA (1993b) Sulfate conjugates of iodothyronines in developing sheep; effect of fetal hypothyroidism. Am J Physiol 265:E115–E120

    CAS  Google Scholar 

  • Wu SY, Polk DH, Chen WL, Fisher DA, Huang WS, Yee B (1994) A 3,3’diiodothyronine sulfate cross-reactive compound in serum from pregnant women. J Clin Endocrinol Metab 1505–1509

    Google Scholar 

  • Wu SY, Polk D, Fisher DA, Huang WS, Reviczky AL, Chen WL (1995) Identification of 3,3’-T2S as a fetal thyroid hormone derivative in maternal urine in sheep. Am J Physiol 268:E33–E39

    PubMed  CAS  Google Scholar 

  • Wyatt I, Coutts CT, Elcombe CR (1993) The effect of chlorinated paraffins on hepatic enzymes and thyroid hormones. Toxicology 77:81–90

    PubMed  CAS  Google Scholar 

  • Young WF, Gorman CA, Weinshilboum RM (1988) Triiodothyronine: a substrate for the thermostable and thermolabile forms of human phenol sulfotransferase. Endocrinology 122:1816–1824

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hennemann, G., Visser, T.J. (1997). Thyroid Hormone Synthesis, Plasma Membrane Transport and Metabolism. In: Weetman, A.P., Grossman, A. (eds) Pharmacotherapeutics of the Thyroid Gland. Handbook of Experimental Pharmacology, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60709-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60709-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64519-8

  • Online ISBN: 978-3-642-60709-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics