Neurophysiological Relevance of Time

  • Andreas K. Engel
  • Pieter R. Roelfsema
  • Peter König
  • Wolf Singer


This surprising tendency for attributes such as form, color, and movement to be handled by separate structures in the brain immediately raises the question of how all the information is finally assembled, say for perceiving a bouncing red ball. It obviously must be assembled somewhere, if only at the motor nerves that subserve the action of catching. Where it’s assembled, and how, we have no idea. (David H. Hubel, 1988)


Visual Cortex Visual Area Primary Visual Cortex Temporal Binding Interhemispheric Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles M. (1982): Local Cortical Circuits. An Electrophysiological Study (Springer, Berlin).Google Scholar
  2. Barlow H.B. (1972): Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394.CrossRefGoogle Scholar
  3. Bragin A., Jandó G., Nádasdy Z., Hetke J., Wise K., Buzsáki G. (1995): Gamma (40-100Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60.Google Scholar
  4. Brecht M., Engel A.K. (1996): Cortico-tectal interactions in the cat visual system. In Artificial Neural Networks — ICANN 96, ed. by C. von der Malsburg, W. von Seelen, J.C. Vorbrüggen, B. Sendhoff (Springer, Berlin), 395–399.Google Scholar
  5. Bressler S.L., Coppola R., Nakamura R. (1993): Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366, 153–156.ADSCrossRefGoogle Scholar
  6. Brosch M., Bauer R., Eckhorn R. (1995): Synchronous high-frequency oscillations in cat area 18. Eur. J. Neurosci. 7, 86–95.CrossRefGoogle Scholar
  7. Bullier J., Nowak L.G. (1995): Parallel versus serial processing: new vistas on the distributed organization of the visual system. Curr. Opin. Neurobiol. 5, 497–503.CrossRefGoogle Scholar
  8. deCharms R.C., Merzenich M.M. (1996): Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613.ADSCrossRefGoogle Scholar
  9. Crick F. (1984): Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81, 4586–4590.ADSCrossRefGoogle Scholar
  10. Damasio A.R. (1990): Synchronous activation in multiple cortical regions: a mechanism for recall. Semin. Neurosci. 2, 287–296.Google Scholar
  11. Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Munk M., Reitboeck H.J. (1988): Coherent oscillations: a mechanism for feature linking in the visual cortex? Biol. Cybern. 60, 121–130.CrossRefGoogle Scholar
  12. Eggermont J.J. (1992): Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation, and age. J. Neurophysiol. 68, 1216–1228.Google Scholar
  13. Engel A.K., König P., Gray C.M., and Singer W. (1990): Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by crosscorrelation analysis. Eur. J. Neurosci. 2, 588–606.CrossRefGoogle Scholar
  14. Engel A.K., König P., Kreiter A.K., Singer W. (1991a): Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252, 1177–1179.ADSCrossRefGoogle Scholar
  15. Engel A.K., Kreiter A.K., König P., Singer W. (1991b): Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc. Natl. Acad. Sci. USA 88, 6048–6052.ADSCrossRefGoogle Scholar
  16. Engel A.K., König P., Singer W. (1991c): Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl. Acad. Sci. USA 88, 9136–9140.ADSCrossRefGoogle Scholar
  17. Engel A.K., König P., Kreiter A.K., Schillen T.B., Singer W. (1992): Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci. 15, 218–226.CrossRefGoogle Scholar
  18. Felleman D.J., van Essen D.C. (1991): Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 1–47.CrossRefGoogle Scholar
  19. Finkel L.H., Edelman G.M. (1989): Integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas. J. Neurosci. 9, 3188–3208.Google Scholar
  20. Fodor J.A., Pylyshyn Z.W. (1988): Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3–71.CrossRefGoogle Scholar
  21. Freeman W.J. (1988): Nonlinear neural dynamics in olfaction as a model for cognition. In Dynamics of Sensory and Cognitive Processing by the Brain, ed. by E. Basar (Springer, Berlin), 19 29.Google Scholar
  22. Freiwald W.A., Kreiter A.K., Singer W. (1995): Stimulus dependent inter-columnar synchronization of single unit responses in cat area 17. Neuroreport 6, 2348–2352.CrossRefGoogle Scholar
  23. Frien A., Eckhorn R., Bauer R., Woelbern T., Kehr H. (1994): Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. Neuroreport 5, 2273–2277.CrossRefGoogle Scholar
  24. Galambos R., Makeig S., Talmachoff P.J. (1981): A 40-Hz auditory potential recorded from the human scalp. Proc. Natl. Acad. Sci. USA 78, 2643–2647.ADSCrossRefGoogle Scholar
  25. Gray C.M., Singer W. (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 1698–1702.ADSCrossRefGoogle Scholar
  26. Gray C.M., König R, Engel A.K., Singer W. (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337.ADSCrossRefGoogle Scholar
  27. Grillner S., Wallén P., Brodin L., Lansner A. (1991): Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu. Rev. Neurosci. 14, 169–199.CrossRefGoogle Scholar
  28. Hebb D.O. (1949): The Organization of Behavior (Wiley, New York).Google Scholar
  29. Hubel D.H. (1988): Eye, Brain, and Vision (Freeman, New York).Google Scholar
  30. Köhler W. (1930): Gestalt Psychology (Bell and Sons, London).Google Scholar
  31. König P., Schillen T.B. (1991): Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural Comput. 3, 155–166.CrossRefGoogle Scholar
  32. König P., Engel A.K. (1995): Correlated firing in sensory-motor systems. Curr. Opin. Neurobiol. 5, 511–519.CrossRefGoogle Scholar
  33. König P., Engel A.K., Löwel, S., Singer W. (1993): Squint affects synchronization of oscillatory responses in cat visual cortex. Eur. J. Neurosci. 5, 501–508.CrossRefGoogle Scholar
  34. König P., Engel A.K., Singer W. (1995): The relation between oscillatory activity and long-range synchronization in cat visual cortex. Proc. Natl. Acad. Sci. USA 92, 290–294.ADSCrossRefGoogle Scholar
  35. König P., Engel A.K., Singer W. (1996): Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19, 130–137.CrossRefGoogle Scholar
  36. Kreiter A.K., Singer W. (1992): Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Eur. J. Neurosci. 4, 369–375.CrossRefGoogle Scholar
  37. Kreiter A.K., Singer W. (1996): Stimulus-dependent synchronization of neuronal responses in the visual cortex of awake macaque monkey. J. Neurosci. 16, 2381–2396.Google Scholar
  38. Kristeva-Feige R., Feige B., Makeig S., Ross B., Elbert T. (1993): Oscillatory brain activity during a motor task. Neuroreport 4, 1291–1294.CrossRefGoogle Scholar
  39. Livingstone M.S. (1996): Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. J. Neurophysiol. 75, 2467–2485.Google Scholar
  40. Löwel S., Singer W. (1992): Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255, 209–212.ADSCrossRefGoogle Scholar
  41. Madler C., Keller I., Schwender D., Pöppel E. (1991): Sensory information processing during general anaesthesia: effect of isoflurane on auditory evoked neuronal oscillations. Brit. J. Anaesth. 66, 81–87.CrossRefGoogle Scholar
  42. Marr D. (1982): Vision (Freeman, San Francisco).Google Scholar
  43. McClelland J.L., Rumelhart D.E., the PDP Research Group (1986): Parallel Distributed Processing Vol. 2: Psychological and Biological Models(MIT Press, Cambridge).Google Scholar
  44. Munk M.H.J., Roelfsema P.R., König P., Engel A.K., Singer W. (1996): Role of reticular activation in the modulation of intracortical synchronization. Science 272, 271–274.ADSCrossRefGoogle Scholar
  45. Murthy V.N., Fetz E.E. (1992): Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. USA 89, 5670–5674.ADSCrossRefGoogle Scholar
  46. Nelson J.I., Salin P.A., Munk M.H.J., Arzi M., Bullier J. (1992): Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. Vis. Neurosci. 9, 21–37.CrossRefGoogle Scholar
  47. Neuenschwander S., Singer W. (1996): Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379, 728–733.ADSCrossRefGoogle Scholar
  48. Neuenschwander S., Engel A.K., König P., Singer W., Varela F.J. (1996): Synchronization of neuronal responses in the optic tectum of awake pigeons. Vis. Neurosci. 13, 575–584.CrossRefGoogle Scholar
  49. Pantev C., Makeig S., Hoke M., Galambos R., Hampson S., Gallen C. (1991): Human auditory evoked gamma-band magnetic fields. Proc. Natl. Acad. Sci. USA 88, 8996–9000.ADSCrossRefGoogle Scholar
  50. Prechtl J.C. (1994): Visual motion induces synchronous oscillations in turtle visual cortex. Proc. Natl. Acad. Sci. USA 91, 12467–12471.ADSCrossRefGoogle Scholar
  51. Roelfsema P.R., König P., Engel A.K., Sireteanu R., Singer W. (1994a): Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur. J. Neurosci. 6, 1645–1655.CrossRefGoogle Scholar
  52. Roelfsema P.R., Engel A.K., Konig P., Singer W. (1994b): Oscillations and synchrony in the visual cortex: evidence for their functional relevance. In Oscillatory Event-Related Brain Dynamics, ed. by C. Pantev, T. Elbert, B. Lütkenhöner (Plenum Press, New York), 99–114.Google Scholar
  53. Roelfsema P.R., Engel A.K., König, P., Singer W. (1995): Synchronization between transcortical field potentials of the visual, parietal and motor cortex in the awake cat. Society for Neuroscience Abstracts 21, 517.Google Scholar
  54. Rumelhart D.E., McClelland J.L., the PDP Research Group (1986): Parallel Distributed Processing Vol. 1: Foundations (MIT Press, Cambridge).Google Scholar
  55. Salin P.-A., Bullier J. (1995): Corticocortical connections in the visual system: structure and function. Physiol. Rev. 75, 107–154.Google Scholar
  56. Sejnowski T.R. (1986): Open questions about computation in cerebral cortex. In Parallel Distributed Processing Vol. 2, ed. by J.L. McClelland, D.E. Rumelhart (MIT Press, Cambridge), 372–389.Google Scholar
  57. Singer W., Gray C.M. (1995): Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586.CrossRefGoogle Scholar
  58. Sporns O., Gally J.A., Reeke G.N.Jr., Edelman G.M. (1989): Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc. Natl. Acad. Sci. USA 86, 7265–7269.ADSCrossRefGoogle Scholar
  59. Tallon C., Bertrand O., Bouchet P., Pernier J. (1995): Gamma-range activity evoked by coherent visual stimuli in humans. Eur. J. Neurosci. 7, 1285–1291.CrossRefGoogle Scholar
  60. Treisman A. (1986): Properties, parts and objects. In Handbook of Perception and Human Performance, ed. by K. Boff, L. Kaufman, I. Thomas (Wiley, New York), 35.1–35.70.Google Scholar
  61. Treisman A. (1996): The binding problem. Curr. Opin. Neurobiol. 6, 171–178.CrossRefGoogle Scholar
  62. Ts’o D.Y., Gilbert C.D. (1988): The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8, 1712–1727.Google Scholar
  63. von der Malsburg C. (1981): The Correlation Theory of Brain Function. Internal Report 81-2, Max-Planck-Institute for Biophysical Chemistry, Göttingen. Reprinted in Models of Neural Networks II, ed. by E. Domany, J.L. van Hemmen, K. Schulten (Springer, Berlin 1994), 95–119.Google Scholar
  64. von der Malsburg C. (1995): Binding in models of perception and brain function. Curr. Opin. Neurobiol. 5, 520–526.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Andreas K. Engel
    • 1
  • Pieter R. Roelfsema
    • 1
    • 2
  • Peter König
    • 3
  • Wolf Singer
    • 1
  1. 1.Max-Planck-Institut für HirnforschungFrankfurtGermany
  2. 2.The Netherlands Ophthalmic Research Institute and Department of Medical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.The Neurosciences InstituteSan DiegoUSA

Personalised recommendations