Advertisement

Neurotransmitter Transporters: Is Glycosylation Necessary for Function?

  • Amrat P. Patel
Conference paper
Part of the NATO ASI Series book series (volume 100)

Abstract

A detailed description of the glycosylation of proteins is beyond the scope of this chapter. A brief outline of the process of glycosylation is described (Fig. 1). Emerging nascent polypeptide in the rough endoplasmic reticulum acquires a core of oligosaccharide from dolichol pyrophosphate catalyzed by glycosyltransferase (Hirschberg and Snider, 1987). This initial core of sugar residues (two N-acetylglucosamine(GlcNAc), nine mannose and three glucose residues) undergoes post-translational processing in endoplasmic reticulum and golgi to yield a final form of the oligosaccharide core. The specificity of sugar residues in the core is due to the presence of specific glycosyltransferases which are cell and tissue specific (Hubbard and Ivat, 1981; Kornfeld and Kornfeld, 1985).

Keywords

Sialic Acid Dopamine Transporter Serotonin Transporter Sialic Acid Residue Gaba Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, T., Takata, K., Katagiri, H, Ishihara, H., Inukai, K., Anai, M., Hirano, H., Yazaki, Y., and Oka, Y. (1993). The role of N-glycosylation in the targeting and stability of GLUTI glucose transporter. Febs Lett. 324:258–261.PubMedCrossRefGoogle Scholar
  2. Berger, P., Martenson, R., Laing, P., Thurcauf, A., DeCosta, B., Rice, K. C, and Paul, S. M. (1991). Photoaffinity labeling of the dopamine reuptake carrier protein with 3-azido[3H]GBR-12935. Mol. Pharmacol., 39: 429–435.PubMedGoogle Scholar
  3. Brant, A.M., Gibbs, M.E., and Gould, G.W. (1992) Examination of the glycosidation state of five members of the human facilitative glucose transporter family. Biochem Soc. Trans. 20: 235S.Google Scholar
  4. Bruss, M., Hammermann, R., Brimijoin, S., and Bonisch, H. (1995). Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J. Biol. Chem. 270: 9197–9201.PubMedCrossRefGoogle Scholar
  5. Conradt, M., Storck, T., and Stoffel, W. (1995). Localization of N-glycosylation sites and functional role of the carbohydrate units of GLAST-1, a cloned rat brain L-glutamate/L-aspartate transporter. Eur. J. iochem. 229: 682–687.Google Scholar
  6. Danbolt, N.C., Pines, G., and Kanner, B.I. (1990). Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29: 6734–6740.PubMedCrossRefGoogle Scholar
  7. Danbolt, N.C., Storm-Mathisen, J., and Kanner, B.I. (1992). A [Na+- K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51: 295–310.PubMedCrossRefGoogle Scholar
  8. Danbolt, N.C. (1994). The high affinity uptake system for excitatory amino acids in the brain. Prog. Neurobiol. 44: 377–396.PubMedCrossRefGoogle Scholar
  9. Grigoriadis, D. E., Wilson, A. A., Lew, R., Sharkey, J. S., and Kuhar, M. J. (1989). Dopamine transporter sites selectively labeled by a novel photoaffinity probe: [125I]DEEP. J. Neurosci. 9: 2664–2670.PubMedGoogle Scholar
  10. Groves, J.D. and Tanner, M.J. (1994). Role of N-glycosylation in the expression of human band 3-mediated anion transport. Mol. Membr. Biol. 11: 31–38.PubMedCrossRefGoogle Scholar
  11. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M.C., Davidson, N.C, Lester, H.A., and Kanner, B.I. (1990). Cloning and expression of a rat brain GABA transporter. Science 249: 1303–1306.PubMedCrossRefGoogle Scholar
  12. Hirschberg, C.B. and Snider, M.D. (1987) Topography of glycosylation in the rough endoplasmic reticulum and golgi apparatus. Ann. Rev. Biochem. 56: 63–87.PubMedCrossRefGoogle Scholar
  13. Hubbard, S.C. and Ivatt, R.J. (1981) Synthesis and processing of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 50: 555–83.PubMedCrossRefGoogle Scholar
  14. Jenkins, N. (1995). Monitoring and control of recombinant glycoprotein heterogeneity in animal cell cultures. Biochem. Soc. Trans., 23: 171–175.PubMedGoogle Scholar
  15. Kanner, B.I. (1994). Sodium-coupled neurotransmitter transport: structure, function and regulation. J. Exp. Biol. 196: 237–249.PubMedGoogle Scholar
  16. Keynan, S., Suh, Y.J., Kanner, B.I., and Rudnick, G. (1992). Expression of a cloned gamma-aminobutyric acid transporter in mammalian cells. Biochem. 31: 1974–1979.CrossRefGoogle Scholar
  17. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54: 631–664.PubMedCrossRefGoogle Scholar
  18. Kusui, T., Hellmich, MR., Wang, L-H, Evans, R.L., Benya, R.V., Battey, J.F., and Jensen, R.T. (1995). Characterization of gastrin-releasing peptide receptor expressed in Sf9 insect cells by Baculovirus. Biochem. 34: 8061–8075.CrossRefGoogle Scholar
  19. Launay, J-M, Geoffroy, C, Mutel, V., Buckel, M., Cesura, A., Alouf, J.E., and Da Prada, M. (1992). One-step purification of the serotonin transporter located at the human platelet plasma membrane. J. Biol. Chem. 267: 11344–11351.PubMedGoogle Scholar
  20. Lee, F.J.S., Pristupa, Z.B., and Niznik, H.B. (1995). The human dopamine transporter: Functional consequences of carboxyl tail truncation/substitution. Soc. Neurosci. 21:374.Google Scholar
  21. Lew, R., Vaughan, R, Simantov, R., Wilson, A., and Kuhar, M.J. (1991). Dopamine transporters in the nucleus accumbens and the striatum have different apparent molecular weights. Synapse, 8: 152–153.PubMedCrossRefGoogle Scholar
  22. Lew, R, Patel, A., Vaughan, R. A., Wilson, A., and Kuhar, M.J. (1992). Microheterogeneity of dopamine transporters in rat striatum and nucleus accumbens. Brain Res. 584: 266–271.PubMedCrossRefGoogle Scholar
  23. McConkey, F., Pristupa, Z.B., and Niznik, H.B. (1995). Pharmacological characterization and functional regulation of the human dopamine transporter in Sf9 cells. Soc. Neurosci. 21: 375.Google Scholar
  24. Melikian, H.E., McDonald, J.K., Gu, H., Rudnick, G., Moore, K.R., and Blakely, R.D. (1994). Human norepinephrine transporter, biosynthetic studies using a site-directed polyclonal antibody. J. Biol. Chem. 269: 12290–12297.PubMedGoogle Scholar
  25. Melikian, H.E., Ramamoorthy, S., Tate, C.G., and Blakely, R.D. (1996). Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. Mol. Pharmacol, in press.Google Scholar
  26. Nelson, H., Mandiyan, S., and Nelson, N. (1990). Cloning of the human brain GABA transporter. FEBS Lett. 269: 181–184.PubMedCrossRefGoogle Scholar
  27. Nguyen, T and Amara, S.G. (1996). N-Linked oligosaccharides are required for cell surface expression of the norepinephrine transporter but do not influence substrate or inhibitor recognition. J. Neurochem., 67: 645–655.PubMedCrossRefGoogle Scholar
  28. Niznik, H. B., Fogel, E. F., Fasso, F. F., and Seeman, P. (1991). The dopamine transporter is absent in Parkinsonian putamen and reduced in the caudate nucleus. J. neurochem., 56: 192–198.PubMedCrossRefGoogle Scholar
  29. Nunez, E. and Aragon, C. (1994). Structural analysis and functional role of the carbohydrate component of glycine transporter. J. Biol. Chem. 269: 16920–16924.PubMedGoogle Scholar
  30. Olivares, L., Aragon, C, Gimenez, C., and Zafra, F. (1995). The role of N-glycosylation in the targeting and activity of the GLYT1 glycine transporter. J. Biol. Chem. 270: 9437–9442.PubMedCrossRefGoogle Scholar
  31. Opdenakker, G., Rudd, P.M., Ponting, C.P., and Dwek, RA. (1993). Concepts and principles of glycobiology. FASEB J. 7: 1330–1337.PubMedGoogle Scholar
  32. Patel, A., Boja, J. W., Lever, J., Lew, R, Simantov, R, Carroll, F. I., Lewin, A. H., Phillip, A., Gao, Y., and Kuhar, M. J. (1991). A cocaine analog and a GBR analog label the same protein in rat striatal membranes. Brain Res., 576: 173–174.CrossRefGoogle Scholar
  33. Patel, A., Uhl, G., and Kuhar, M.J. (1993). Species differences in dopamine transporters: Postmortem changes and glycosylation differences. J. Neurochem. 61:496–500.PubMedCrossRefGoogle Scholar
  34. Patel, A. P., Cerruti, C, Vaughan, R. A., and Kuhar, M.J. (1994). Developmentally regulated glycosylation of dopamine transporter. Developmental Brain Res., 83:53–58.CrossRefGoogle Scholar
  35. Patel, A.P. (1996). Neurotransmitter transporter proteins: Posttranslational modifications. In Neurotransmitter Transporters: Structure, Function, and Regulation (Ed. M.E. A. Reith), Humana Press Inc., NJ. pp 241–262.CrossRefGoogle Scholar
  36. Qian, Y., Melikian, H.E., Rye, D.B., Levey, A.I., and Blakely, R.D. (1995). Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies. J. Neurosci. 15: 1261–1274.PubMedGoogle Scholar
  37. Radian, R., Bendahan, A., and Kanner, B.I. (1986). Purification and identification of the functional sodium- and chloride-coupled g-aminobutyric acid transport glycoprotein from rat brain. J. Biol. Chem. 261: 15437–15441.PubMedGoogle Scholar
  38. Rotondo, A., Giannaccini, G., Betti, L., Chiellini, G., Marazziti, D., Martin, C, Lucacchini, A., and Cassano, G.B. The serotonin transporter from human brain: Purification and partial characterization. Neurochem. Int. 28: 299–307, 1996.PubMedCrossRefGoogle Scholar
  39. Sallee, F. R., Fogel, E. L., Schwartz, E., Choi, S. M., Curran, D. P., and Niznik, H. B. (1989). Photoaffinity labeling of the mammalian dopamine transporter. FEBS Lett., 256: 219–224.PubMedCrossRefGoogle Scholar
  40. Szabados, L., Mester, L., Michal, F., and Born, G. V.R. (1975). Accelerated uptake of 5-Hydroxytryptamine by human blood platelets enriched in a sialic acid. Biochem. J. 148: 335–336.PubMedGoogle Scholar
  41. Tate, C.G. and Blakely, R.D. (1994). The effect of N-linked glycosylation on activity of the Na+ and Cl- dependent serotonin transporter expressed using recombinant baculovirus in insect cells. J. Biol. Chem. 269: 26303–26310.PubMedGoogle Scholar
  42. Vaughan, R.A., Brown, V.L., McCoy, M.T., and Kuhar, M.J. (1996). Species- and Brain Region-Specific Dopamine Transporters:Immunological and Glycosylation Chacteristics. J Neurochem, 66, 2146–2152.PubMedCrossRefGoogle Scholar
  43. Wennogle, L.P., Ashton, R.A., Schuster, D.I., Murphy, R.B., and Meyerson, L.R. (1985). 2-Nitroimipramine: a photoaffinity probe for the serotonin uptake/tricyclic binding site complex. EMBO J. 4: 971–977.PubMedGoogle Scholar
  44. Zaleska, M. M. and Erecinska, M. (1987). Involvement of sialic acid in high-affinity uptake of dopamine by synaptosomes from rat brain. Neurosci. Lett., 82: 107–112.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Amrat P. Patel
    • 1
  1. 1.Intramural Research Program, Neuroscience Branch, Molecular Pharmacology SectionNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUSA

Personalised recommendations