Skip to main content

Genetic Divergence Among the Group B Coxsackieviruses

  • Chapter
The Coxsackie B Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 223))

Abstract

Six serotypes comprise the group B coxsackieviruses (CVB 1-6) (Melnick 1996). Similar to other members of the family Picornaviridae, the CVB genome is a single stranded, messenger sense, polyadenylated RNA molecule (Rueckert 1996). Analysis of the genomes from the fully sequenced CVB (CVB1, 3, 4, and 5) (Table 1) further documents their relationship to the Picornaviridae by demonstrating that they are organized into a 5’ nontranslated region, a protein coding region containing a single open reading frame, a 3’ nontranslated region and a terminal polyA tail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold E, Rossman MG (1990) Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 A. J Mol Biol 211:763–801

    Article  PubMed  CAS  Google Scholar 

  • Chapman NM, Tu Z, Tracy S, Gauntt CJ (1994) An infectious cDNA copy of the genome of a non-cardiovirulent coxsackievirus B3 strain: its complete sequence analysis and comparison to the genomes of cardiovirulent coxsackieviruses. Arch Virol 135:115–130

    Article  PubMed  CAS  Google Scholar 

  • Chumakov KV, Agol VI (1976) Poly(C) sequence islocated near the 5’ end of the encephalomyocarditis virus RNA. Biochem Biophys Res Commun 71:551–557

    Article  PubMed  CAS  Google Scholar 

  • Drebot MA, Nguan CY, Campbell JJ, Lee SHS, Forward KR (1994) Molecular epidemiology of enterovirus outbreaks in Canada during 1991-1992: identification of echovirus 30 and coxsackievirus B1 strains by amplicon sequencing. J Med Virol 44:340–347

    Article  PubMed  CAS  Google Scholar 

  • Gauntt CJ, Pallansch MA (1996) Coxsackievirus B3 clinical isolates and murine myocarditis. Virus Research 38:125–136

    Google Scholar 

  • Gauntt CJ, Trousdale MD, LaBadie DRL, Paque RE, Nealon T (1979) Properties of coxsackievirus B3 variants which are amyocarditic of myocarditic for mice. J Med Virol 3:207–220

    Article  PubMed  CAS  Google Scholar 

  • Harber J, Wimmer E (1993) Aspects of the molecular biology of picornaviruses. Carrasco L Sonenberg N Wimmer E , Regulation of Gene Expression in Animal Viruses. Plenum Press, New York

    Google Scholar 

  • Harris TJR, Brown F (1976) The location of the poly(C) tract in the RNA of foot-and-mouth disease virus. J Gen Virol 33:493–501

    Article  PubMed  CAS  Google Scholar 

  • Hartig PC, Madge GE, Webb SR (1993) Diversity within a human isolate of coxsackie B4: relationship to viral-induced diabetes. J Med Virol 11:23–30

    Article  Google Scholar 

  • Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Nomoto A (1987) Complete nucleotide sequence of the genome of coxsackievirus Bl. Virology 156:64–73

    Article  PubMed  Google Scholar 

  • Jenkins O, Booth JD, Minor PD, Almond JW (1987) The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the picornaviridae. J Gen Virol 63:1835–1848

    Article  Google Scholar 

  • Kang Y, Chatterjee NK, Nodwell MJ, Yoon JW (1994) Complete nucleotide sequence of a strain of coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JBV strain. J Med Virol 44:353–361

    Article  PubMed  CAS  Google Scholar 

  • Kew OM (1988) Applications of molecular epidemiology to the surveillance of poliomyelitis. Procee dings of the National Academy of Medicine, Institute of Medicine conference “Poliomyelitis Vaccines: Re-evaluating Policy Options.” Washington DC: National Academy of Sciences

    Google Scholar 

  • Klump WM, Bergmann I, Muller BC, Ameis D, Kandolf R (1990) Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: two initial 5’ uridine residues are regained during plus-strand RNA synthesis. J Virol 64:1573–1583

    PubMed  CAS  Google Scholar 

  • Kopecka H, Brown B, Pallansch M (1995) Genotypic variation in coxsackievirus B5 isolates from three different outbreaks in the United States. Virus Research 38:125–136

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Maull E, Chapman N, Tracy S, Wood J, Gauntt C (1996) Generation of an infectious cDNA of a highly cardiovirulent coxsackievirus B3 (CVB3m) and comparison to other infectious CVB3 cDNAs (Submitted)

    Google Scholar 

  • Lindberg AM, Stalhandske POK, Pettersson U (1987) Genome of coxsackievirus B3. Virology 156:50–63

    Article  PubMed  CAS  Google Scholar 

  • Lindberg MA, Crowell RL, Zell R, Kandolf R, Pettersson U (1992) Mapping of the RD phenotype of the Nancy strain of coxsackievirus B3. Virus Res. 24:187–196

    Article  PubMed  CAS  Google Scholar 

  • Melnick JL (1996) Enteroviruses: polioviruses, coxsackieviruses, echoviruses and newer enteroviruses. In: Fields BNKnipe DMHowley PM (eds) Virology (3rd Edn) Lippincott-Raven Press, Philadelphia

    Google Scholar 

  • Minor PD, Ferguson M, Evans DM, Almond JW, Iconogle JP (1986) Antigenic structure of polioviruses of serotypes 1, 2, and 3. J Gen Virol 67:1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Mirzayan C, Wimmer E (1992) Genetic analysis of an NTP-binding motif in poliovirus polypeptide 2C. Virology 189:547–555

    Article  PubMed  CAS  Google Scholar 

  • Mirzayan C, Wimmer E (1994) Biochemical studies on poliovirus polypeptide 2C: Evidence for ATPase Activity. Virology 199:176–187

    Article  PubMed  CAS  Google Scholar 

  • Muckelbauer JK, Kremer M, Minor I, Diana G, Dutko FJ, Groarke J, Pevear DC, Rossmann MG (1995) The structure of coxsackievirus B3 at 3.5 A resolution. Structure 3:653–667

    Article  PubMed  CAS  Google Scholar 

  • Olive DM, Al-Mufti S, Al-Mulla W, Khan MA, Pasca A, Stanway G, Al-Nakib W (1990) Detection and differentiation of picornaviruses in clinical samples following genomic amplification. J Gen Virol 71:2141–2147

    Article  PubMed  CAS  Google Scholar 

  • Page GS, Mosser AG, Hogle JM, Filman DJ, Rueckert RR, Chow M (1988) Three-dimensional structure of poliovirus serotype 1 neutralizing determinants. J Virol 63:1781–1794

    Google Scholar 

  • Palmenberg AC (1989) Sequence alignments of picornaviral capsid proteins. In: Semler BLEhrenfeld E (eds) Molecular aspects of picornavirus infection and detection. American Society for Microbiology, Washington DC, pp 211–241

    Google Scholar 

  • Perez-Bercoff R, Gander M (1977) The genomic RNA of mengovirus. I. location of the poly(C) tract. Virology 80:426–129

    Article  CAS  Google Scholar 

  • Reagan KJ, Goldberg G, Crowell RL (1984) Altered receptor specificity of coxsackievirus B3 after growth in rhabdomyosarcoma cells. J Virol 49:635–640

    PubMed  CAS  Google Scholar 

  • Reimann BY, Zell R, Kandolf R (1991) Mapping of a neutralizing antigenic site of coxsackievirus B4 by construction of an antigen chimera. J Virol 64:3475–3480

    Google Scholar 

  • Rico-Hesse R, Pallansch M, Nottay B, Kew O (1987) Geographic distribution of wild poliovirus type 1 genotypes. Virology 160:311–322

    Article  PubMed  CAS  Google Scholar 

  • Romero JR, Tracy S, Chapman N, Gauntt C (1994) Genetic variation in coxsackievirus B3 genomes. 13th Annual American Society for Virology Scientific Program and Abstracts, pp 47-11

    Google Scholar 

  • Romero JR, Rotbart HA (1995a) Sequence analysis of the downstream 5’ nontranslated region of seven echoviruses with different neurovirulence phenotypes. J Virol 69:1370–1375

    PubMed  CAS  Google Scholar 

  • Romero JR, Leser JS, Tracy S, Chapman N, Winters D (1995b) Amino acid sequence variation in the major surface loop (VP2 E-F) of the cell receptor site from 8 clinical isolates of coxsackievirus B3. Pediatric Research 37:187A

    Google Scholar 

  • Romero JR, Tracy SM, Pong, AL, Hinrich SH, Leser JS, Dunn JJ (1996) Genetic diversity and molecular epidemiology among coxsackievirus B2 (CVB2) during a community outbreak. Pediatric Research 39:184A

    Article  Google Scholar 

  • Rossman MG (1989) The canyon hypothesis. J Biol Chem 264:14587–14590

    Google Scholar 

  • Rossman MG, Palmenberg AC (1988) Conservation of the putative receptor attachment site in picornaviruses. Virology 164:373–382

    Article  Google Scholar 

  • Rowlands DJ, Harris TJR, Brown F (1978) Moore precise location of the polycytidylic acid tract in foot and mouth disease virus RNA. J Virol 26:335–343

    PubMed  CAS  Google Scholar 

  • Rueckert RR, Wimmer E (1984) Systematic nomenclature of picornaviral proteins. J Virol 50:937–959

    Google Scholar 

  • Rueckert RR (1996) Picornaviridae: The viruses and their replication. In: Fields BNKnipe DMHowley PM (eds) Virology (3rd edn) Lippincott-Raven, Philadelphia, pp 609–654

    Google Scholar 

  • Sherry B, Mosser AG, Colonno RJ, Reuckert RR (1986) Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornaviruses of serotypes 1, 2, and 3. J Virol 57:246–257

    PubMed  CAS  Google Scholar 

  • Sherry B, Rueckert RR (1985) Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 53:137–143

    PubMed  CAS  Google Scholar 

  • Titchener PA, Jenkins O, Szopa TM, Taylor KW, Almond JW (1994) Complete nucleotide sequence of a beta-cell tropic variant of coxsackievirus B4. J Med Virol 42:369–373

    Article  PubMed  CAS  Google Scholar 

  • Toyoda H, Kohara M, Kataoka Y, Suganuma T, Omata T, Imura N, Nomoto A (1984) Complete nucleotide sequences of all three poliovirus serotype genomes: implication for genetic relationship, gene function and antigenic determinants. J Mol Biol 174:561–585

    Article  PubMed  CAS  Google Scholar 

  • Tracy S, Chapman NM, Tu Z (1992) Coxsackievirus B3 from an infectious cDNA copy of the genome is cardiovirulent in mice. Arch Virol 122:399–409

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Wilsden G, Knowles NJ, McCauley JW (1993) Complete nucleotide sequence of a coxsackie B5 virus and its relationship to swine vesicular disease virus. J Gen Virol 74:845–853

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romero, J.R., Price, C., Dunn, J.J. (1997). Genetic Divergence Among the Group B Coxsackieviruses. In: Tracy, S., Chapman, N.M., Mahy, B.W.J. (eds) The Coxsackie B Viruses. Current Topics in Microbiology and Immunology, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60687-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60687-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64507-5

  • Online ISBN: 978-3-642-60687-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics