Skip to main content

Genetics of Coxsackievirus Virulence

  • Chapter
The Coxsackie B Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 223))

Abstract

The first reported isolate of the coxsackieviruses occurred in the upstate New York town of Coxsackie (Dalldorf and Sickles 1948). By the mid-late 1950s (Dalldorf 1955), the coxsackie B viruses (CVBs) had been shown to be agents of severe human inflammatory heart muscle disease (myocarditis) (Montgomery et al. 1955; Gear et al. 1956; Javett et al. 1956; van Creveld and de Jager 1956; Verlinde et al. 1956; Fletcher and Brennan 1957; Kibrick and Benirschke 1958; Simenhoff and Ulys 1958). In the intervening years, the CVBs have been confirmed as etiologic agents of, or etiologically linked to, a host of human diseases ranging from flu-like illness through severe inflammatory diseases of the heart and central nervous system (Melnick 1990; Chaps. 2–4 ). Based on molecular detection data, it is estimated that enteroviruses (likely in most cases to be CVBs) are etiologic agents in perhaps 20%–25% of the cases of inflammatory heart disease (or myocarditis) and dilated cardiomyopathy (DCM), although individual reports range from 0%–53% (Bowles et al. 1986; Easton and Eglin 1988; Tracy et al. 1990; Kandolf and Hofschneider 1991; Grasso et al. 1992; reviewed in Martino et al. 1995). DCM alone afflicts approximately five to eight per 100 000 per year worldwide (Williams and Olsen 1985; Manolio et al. 1992). In the aggregate, these data indicate that there are at least 5000 or more occurrences of enterovirus-induced DCM alone per year in the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agol VI (1991) The 5’-untranslated region of picornaviral genomes. Adv Virus Res 40:103–180

    Article  PubMed  CAS  Google Scholar 

  • Altmeyer R, Escriou N, Girard M, Palmenberg A, vander Werf S (1994) Attenuated Mengo virus as a vector for immunogenic human immunodeficiency virus type 1 glycoprotein 120. Proc Natl Acad Sci USA 91:9775–9779

    Article  CAS  Google Scholar 

  • Altmeyer R, Girard M, Van derWerf S, Mimic V, Seigneur L, Saron M (1995) Attenuated Mengo virus: a new vector for live recombinant vaccines. J Virol 69:3193–3196

    CAS  Google Scholar 

  • Andino R, Silvera D, Suggett SD, Achacoso PL, Miller CJ, Baltimore D, Feinberg MB (1994) Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science 265:1448–1451

    Article  PubMed  CAS  Google Scholar 

  • Arnold GF, Resnick DA, Li Y, Zhang A, Smith AD, Geisler SC, Jacobo-Molina A, Lee W, Webster RG, Arnold E (1994) Design and construction of rhinovirus chimeras incorporating immunogens from polio, influenza, and human immunodeficiency viruses. Virology 198:703–708

    Article  PubMed  CAS  Google Scholar 

  • Assaad F, Cockburn WC (1982) The relation between acute persisting spinal paralysis and poliomyelitis vaccine - results of a ten-year enquiry. Bull WHO 60:231–242

    Google Scholar 

  • Bae YS, Yoon JW (1993) Determination of diabetogenicity attributable to a single amino acid, Ala776, on the polyprotein of encephalomyocarditis virus. Diabetes 42:435–443

    Article  PubMed  CAS  Google Scholar 

  • Banatvala JE, Bryant J, Schernthaner G, Borkenstein M, Schober E, Brown D, DeSilva LM, Menser MA, Silink M (1985) Coxsackie B, mumps, rubella, and cytomegalovirus specific IgM responses in patients with juvenile-onset insulin-dependent diabetes mellitus in Britain, Austria, and Australia. Lancet i:1409–1412

    Article  Google Scholar 

  • Beck MA, Chapman NM, McManus BM, Mullican JC, Tracy S (1990) Secondary enterovirus infection in the murine model of myocarditis. Pathologic and immunologic aspects. Am J Pathol 136:669–681

    PubMed  CAS  Google Scholar 

  • Beck MA, Tracy S, Coller BA, Chapman NM, Hufnagel G, Johnson JE, Lomonossoff G (1992) Comoviruses and enteroviruses share a T cell epitope. Virology 186:238–246

    Article  PubMed  CAS  Google Scholar 

  • Beck M, Kolbeck P, Rohr L, Shi Q, Morris V, Levander O (1994a) Vitamin E deficiency intensifies the myocardial injury of coxsackievirus B3 infection of mice. J Nutr 124:345–358

    PubMed  CAS  Google Scholar 

  • Beck M, Kolbeck P, Rohr L, Shi Q, Morris V, Levander O (1994b) Benign human virus becomes virulent in selenium-deficient mice. J Med Virol 43:166–170

    Article  PubMed  CAS  Google Scholar 

  • Beck M, Kolbeck P, Shi Q, Rohr L, Morris V, Levander O (1994c) Increased virulence of a human enterovirus (coxsackievirus B3) in selenium-deficient mice. J Infect Dis 170:351–357

    Article  PubMed  CAS  Google Scholar 

  • Beck M, Shi Q, Levander O (1995) Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical viral isolates. Nat Med 1:433–436

    Article  PubMed  CAS  Google Scholar 

  • Bienz K, Egger D, Troxler M, Pasamontes L (1990) Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J Virol 64:1156–1163

    PubMed  CAS  Google Scholar 

  • Blyn LB, Chen R, Semler BL, Ehrenfeld E (1995) Host cell proteins binding to domain IV of the 5’ noncoding region of poliovirus RNA. J Virol 69:4381–4389

    PubMed  CAS  Google Scholar 

  • Bouchard MJ, Lam DH, Racaniello VR (1995) Determinants of attenuation and temperature sensitivity in the type 1 poliovirus Sabin vaccine. J Virol 69:4972–978

    PubMed  CAS  Google Scholar 

  • Bowles NE, Richardson PJ, Olsen EG, Archard LC (1986) Detection of Coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1:1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Burke KL, Dunn G, Ferguson M, Minor PD, Almond JW (1988) Antigen chimaeras of poliovirus as potential new vaccines. Nature 332:81–82

    Article  PubMed  CAS  Google Scholar 

  • Caggana M, Chan P, Ramsingh A (1993) Identification of a single amino acid residue in the capsid protein VP1 of Coxsackievirus B4 that determines the virulent phenotype. J Virol 67:4797–4803

    PubMed  CAS  Google Scholar 

  • Calenoff MA, Faaberg KS, Lipton HL (1990) Genomic regions of neurovirulence and attenuation in Theiler murine encephalomyelitis virus. Proc Natl Acad Sci USA 87:978–982

    Article  PubMed  CAS  Google Scholar 

  • Chapman NM, Tu Z, Tracy S, Gauntt CJ (1994) An infectious cDNA copy of the genome of a noncardiovirulent coxsackievirus B3 strain: its complete sequence analysis and comparison to the genomes of cardiovirulent coxsackieviruses. Arch Virol 135:115–130

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee NK, Nejman C, Gerling I (1988) Purification and characterization of a strain of coxsackievirus B4 of human origin that induces diabetes in mice. J Med Virol 26:57–69

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Kong WP, Zhang L, Ward PL, Roos RP (1995) A picornaviral protein synthesized out of frame with the polyprotein plays a key role in a virus-induced immune-mediated demyelinating disease. Nat Med 1:927–931

    Article  PubMed  CAS  Google Scholar 

  • Chow LH, Beisel KW, McManus BM (1992) Enteroviral infection of mice with severe combined immunodeficiency. Evidence for direct viral pathogenesis of myocardial injury. Lab Invest 66:24–31

    PubMed  CAS  Google Scholar 

  • Clements GB, Galbraith DN, Taylor KW (1995) Coxsackie B virus infection and onset of childhood diabetes. Lancet 346:221–223

    Article  PubMed  CAS  Google Scholar 

  • Couderc T, Christodoulou C, Kopecka H, Marsden S, Taffs LF, Crainic R, Horaud F (1989) Molecular pathogenesis of neural lesions induced by poliovirus type 1. J Gen Virol 70:2907–2918

    Article  PubMed  Google Scholar 

  • Couderc T, Guedo N, Calvez V, Pelletier I, Hogle J, Colbere-Garapin F, Blondel B (1994). Substitutions in the capsids of poliovirus mutants selected in human neuroblastoma cells confer on the Mahoney type 1 strain a phenotype neurovirulent in mice. J Virol 68:8386–8391

    PubMed  CAS  Google Scholar 

  • Currey KM, Peterlin BM, Maizel JV Jr (1986) Secondary structure of poliovirus RNA: correlation of computer-predicted with electron microscopically observed structure. Virology 148:33–46

    Article  PubMed  CAS  Google Scholar 

  • Dalldorf G (1955) The coxsackie viruses. Ann Rev Microbiol 9:277–296

    Article  CAS  Google Scholar 

  • Dalldorf G, Sickles, G.M. (1948) An unidentified, filtrable agent isolated from the feces of children with paralysis. Science 108:61–62

    Article  PubMed  CAS  Google Scholar 

  • delAngel R, Papavassilou A, Fernandez-Tomas C, Silverstein S, Racaniello V (1989) Cell proteins bind to multiple sites within the 5’ untranslated region of poliovirus RNA. Proc Natl Acad Sci USA 86:8299–8303

    Article  PubMed  Google Scholar 

  • Duke GM, Osorio JE, Palmenberg AC (1990) Attenuation of Mengo virus through genetic engineering of the 5’ noncoding poly(C) tract. Nature 343:474–476

    Article  PubMed  CAS  Google Scholar 

  • Easton AJ, Eglin RP (1988) The detection of coxsackievirus RNA in cardiac tissue by in situ hybridization. J Gen Virol 69:285–291

    Article  PubMed  CAS  Google Scholar 

  • Evans DM, Dunn G, Minor PD, Schild GC, Cann AJ, Stanway G, Almond JW, Currey K, Maizel JV Jr (1985) Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature 314:548–550

    Article  PubMed  CAS  Google Scholar 

  • Evans DJ, McKeating J, Meredith JM, Burke KL, Katrak K, John A, Ferguson M, Minor PD, Weiss RA, Almond JW (1989) An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 339:385–388

    Article  PubMed  CAS  Google Scholar 

  • Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM (1989) Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J 8:1567–1579

    PubMed  CAS  Google Scholar 

  • Finnegan A, Amburgey CF (1989) A single amino acid mutation in a protein antigen abrogates presentation of certain T cell determinants. J Exp Med 170:2171–2176

    Article  PubMed  CAS  Google Scholar 

  • Fletcher E, Brennan CF (1957) Cardiac complications of coxsackie virus infection. Lancet i:913

    Article  Google Scholar 

  • Fohlman J, Pauksen K, Morein B, Bjare U, Ilback NG, Friman G (1993) High yield production of an inactivated coxsackie B3 adjuvant vaccine with protective effect against experimental myocarditis. Scand J Infect Dis Suppl 88:103–108

    PubMed  CAS  Google Scholar 

  • Fu J, Rodriguez M, Roos RP (1990) Strains from both Theiler’s virus subgroups encode a determinant for demyelination. J Virol 64:6345–6348

    PubMed  CAS  Google Scholar 

  • Gauntt C, Pallansch M (1996) Coxsackievirus B3 clinical isolates and murine myocarditis. Virus Res 41:89–99

    Article  PubMed  CAS  Google Scholar 

  • Gauntt CJ, Trousdale MD, LaBadie DR, Paque RE, Nealon T (1979) Properties of coxsackievirus B3 variants which are amyocarditic or myocarditic for mice. J Med Virol 3:207–220

    Article  PubMed  CAS  Google Scholar 

  • Gauntt CJ, Paque RE, Trousdale MD, Gudvangen RJ, Barr DT, Lipotich GJ, Nealon TJ, Duffey PS (1983) Temperature-sensitive mutant of coxsackievirus B3 establishes resistance in neonatal mice that protects them during adolescence against coxsackievirus B3-induced myocarditis. Infect Immun 39:851–864

    PubMed  CAS  Google Scholar 

  • Gauntt CJ, Godeny EK, Lutton CW, Arizpe HM, Chapman NM, Tracy SM, Revtyak GE, Valente AJ, Rozek MM (1989) Mechanism(s) of coxsackievirus-induced acute myocarditis in the mouse. In: de laMaza LMPeterson EM (eds) Medical Virology 8. Plenum, New York, pp 161–182

    Google Scholar 

  • Gear J, Measroch V, Prinsloo FR (1956) The medical and public health importance of the coxsackie viruses. S Afr Med J 30:806–810

    PubMed  CAS  Google Scholar 

  • Gebhard J, Ehrenfeld E (1992) Specific interactions of HeLa cell proteins with proposed translation domains of the poliovirus 5’ noncoding region. J Virol 66:3101–3109

    PubMed  CAS  Google Scholar 

  • Georgescu MM, Delpeyroux F, Tardy-Panit M, Balanant J, Combiescu M, Combiescu AA, Guillot S, Crainic R (1994) High diversity of poliovirus strains isolated from the central nervous system from patients with vaccine-associated paralytic poliomyelitis. J Virol 68:8089–8101

    PubMed  CAS  Google Scholar 

  • Godney EK, Arizpe HM, Gauntt CJ (1987) Characterization of the antibody response in vaccinated mice protected against Coxsackievirus B3-induced myocarditis. Viral Immunol 1:305–314

    Article  PubMed  Google Scholar 

  • Grant RA, Filman DJ, Fujinami RS, Icenogle JP, Hogle JM (1992) Three-dimensional structure of Theiler’s virus. Proc Natl Acad Sci USA 89:2061–2065

    Article  PubMed  CAS  Google Scholar 

  • Grasso M, Arbustini E, Silini E, Diegoli M, Percivalle E, Ratti G, Bramerio M, Gavazzi A, Vigano M, Milanesi G (1992) Search for Coxsackievirus B3 RNA in idiopathic dilated cardiomyopathy using gene amplification by polymerase chain reaction. Am J Cardiol 69:658–664

    Article  PubMed  CAS  Google Scholar 

  • Grist N, Bell E, Assaad F (1978) Enteroviruses and human disease. Prog Med Virol 24:114–157

    PubMed  CAS  Google Scholar 

  • Hahn H, Palmenberg AC (1995) Encephalomyocarditis viruses with short poly(C) tracts are more virulent than their mengovirus counterparts. J Virol 69:2697–2699

    PubMed  CAS  Google Scholar 

  • Haller AA, Stewart SR, Semler BL (1996) Attenuation stem-loop lesions in the 5’ noncoding region of poliovirus RNA: neuronal cell-specific translation defects. J Virol 70:1467–1474

    PubMed  CAS  Google Scholar 

  • Hellen C, Wimmer E (1992) Maturation of poliovirus capsid proteins. Virology 187:391–397

    Article  PubMed  CAS  Google Scholar 

  • Hellen C, Wimmer E (1995 ) Enterovirus genetics. In: Rotbart H (ed)Human enterovirus infections, Amer Soc Microbiol, Washington, DC, pp 25–72

    Google Scholar 

  • Hellen C, Pestova T, Litterst M, Wimmer E (1994) The cellular peptide p57 (pyrimidine tract binding protein) binds to multiple sites in the poliovirus 5’ non-translated region. J Virol 68:941–950

    PubMed  CAS  Google Scholar 

  • Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365

    Article  PubMed  CAS  Google Scholar 

  • Horie H, Koike S Kurata T Sato-Yoshida Y, Ise I, Ota Y, Abe S, Hioki K, Kato H, Taya C, Nomura T, Hashizume S, Yonekawa H, Nomoto A (1994) Transgenic mice carrying the human poliovirus receptor: new animal models for study of poliovirus neurovirulence. J Virol 68:681-688

    PubMed  CAS  Google Scholar 

  • Huber SA, Job LP (1983) Differences in cytolytic T cell response of BALB/c mice infected with myocarditic and non-myocarditic strains of coxsackievirus group B, type 3. Infect Immun 39:1419–1427

    PubMed  CAS  Google Scholar 

  • Huber SA, Pfaeffle B (1994) Differential Thl and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3. J Virol 68:5126–5132

    PubMed  CAS  Google Scholar 

  • Huber SA, Job LP, Woodruff JF (1980) Lysis of infected myofibers by coxsackievirus B-3-immune T lymphocytes. Am J Pathol 98:681–694

    PubMed  CAS  Google Scholar 

  • Huber SA, Polgar J, Schultheiss P, Schwimmbeck P (1994) Augmentation of pathogenesis of coxsackievirus B3 infections in mice by exogenous administration of interleukin-1 and interleukin-2. J Virol 68:195–206

    PubMed  CAS  Google Scholar 

  • Jarousse N, Grant RA, Hogle JM, Zhang L, Senkowski A, Roos RP, Michiels T, Brahic M, McAllister A(1994) A single amino acid change determines persistence of a chimeric Theiler’s virus. J Virol 68:3364–3368

    PubMed  CAS  Google Scholar 

  • Javett SN, Heymann S, Mundel B, Pepler WJ, Lurie HI, Gear J, Measroch V, Kirsch Z (1956) Myocarditis in the newborn infant: a study of an outbreak associated with coxsackie group B virus infection in a maternity home in Johannesburg. J Pediatr 48:1–22

    Article  PubMed  CAS  Google Scholar 

  • Jenkins O, Booth J, Minor P, Almond J (1987) The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the Picornaviridae. J Gen Virol 68:1835–1848

    Article  PubMed  Google Scholar 

  • Johnson KL, Sarnow P (1991) Three poliovirus 2B mutants exhibit noncomplementable defects in viral RNA amplification and display dosage-dependent dominance over wild-type poliovirus. J Virol 65:4341–4349

    PubMed  CAS  Google Scholar 

  • Johnson VH, Semler BL (1988) Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5’-noncoding regions of viral RNAs. Virology 162:47–57

    Article  PubMed  CAS  Google Scholar 

  • Kandolf R, Hofschneider PH (1989) Viral heart disease. Springer Semin Immunopathol 11:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Chatterjee NK, Nodwell MJ, Yoon JW (1994) Complete nucleotide sequence of a strain of coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JBV strain. J Med Virol 44:353–361

    Article  PubMed  CAS  Google Scholar 

  • Kaptur PE, Thomas DC, Giron DJ (1989) Differing attachment of diabetogenic and nondiabetogenic variants of encephalomyocarditis virus to beta-cells. Diabetes 38:1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Kawamura N, Kohara M, Abe S, Komatsu T, Tago K, Arita M, Nomoto A (1989) Determinants in the 5’ noncoding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol 63:1302–1309

    PubMed  CAS  Google Scholar 

  • Kibrick S, Benirschke K (1958) Severe generalized disease(encephalohepatomyocarditis) occurring in the newborn period and due to infection with coxsackievirus, group B. Pediatrics 22:857–875

    CAS  Google Scholar 

  • King ML, Shaikh A, Bidwell D, Boiler A, Banatvala JE (1983) Coxsackie-B-virus-specific IgM responses in children with insulin-dependent (juvenile-onset; type I) diabetes mellitus. Lancet 1:1397–1399

    Article  PubMed  CAS  Google Scholar 

  • Klump WM, Bergmann I, Muller BC, Ameis D, Kandolf R (1990) Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5’ uridine residues are regained during plus-strand RNA synthesis. J Virol 64:1573–1583

    PubMed  CAS  Google Scholar 

  • LaMonica N, Racaniello VR (1989) Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J Virol 63:2357–2360

    PubMed  Google Scholar 

  • Lansdown ABG (1976) Pathological changes in the pancreas of mice following infection with coxsackie B viruses. Br J Exp Path 57:331–338

    CAS  Google Scholar 

  • Le SY, Zuker M (1990) Common structures of the 5’ non-coding RNA in enteroviruses and rhinoviruses. Thermodynamical stability and statistical significance. J Mol Biol 216:729–741

    Article  PubMed  CAS  Google Scholar 

  • Le SY, Chen JH, Sonenberg N, Maizel JV (1992) Conserved tertiary structure elements in the 5’ untrans lated region of human enteroviruses and rhinoviruses. Virology 191:858–866

    Article  PubMed  CAS  Google Scholar 

  • Leslie K, Blay R, Haisch C, Lodge A, Weller A, Huber S (1989) Clinical and experimental aspects of viral myocarditis. Clin Microbiol Rev 2:191–203

    PubMed  CAS  Google Scholar 

  • Lipton HL (1975) Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun 11:1147–1155

    PubMed  CAS  Google Scholar 

  • Lorch Y, Friedmann A, Lipton HL, Kotler M (1981 ) Theiler’s murine encephalomyelitis virus group includes two distinct genetic subgroups that differ pathologically and biologically. J Virol 40:560–567

    PubMed  CAS  Google Scholar 

  • Loudon RP, Moraska AF, Huber SA, Schwimmbeck P, Schultheiss P (1991) An attenuated variant of Coxsackievirus B3 preferentially induces immunoregulatory T cells in vivo. J Virol 65:5813–5819

    PubMed  CAS  Google Scholar 

  • Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, Palmenberg AC (1987) The atomic structure of Mengo virus at 3.0 A resolution. Science 235:182–191

    Article  PubMed  CAS  Google Scholar 

  • Luo M, He C, Toth KS, Zhang CX, Lipton HL (1992) Three-dimensional structure of Theiler murine encephalomyelitis virus (BeAn strain). Proc Natl Acad Sci USA 89:2409–2413

    Article  PubMed  CAS  Google Scholar 

  • Macadam AJ, Arnold C, Howlett J, John A, Marsden S Taffs F, Reeve P, Hamada N, Wareham K, Almond J, Cammick N, Minor PD (1989) Reversion of the attenuated and temperature-sensitive phenotypes of the Sabin type 3 strain of poliovirus in vaccinees. Virology 172:408–414

    Google Scholar 

  • Macadam AJ, Pollard SR, Ferguson G, Skuce R, Wood D, Almond JW, Minor PD (1993) Genetic basis of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates. Virology 192:18–26

    Article  PubMed  CAS  Google Scholar 

  • Maisch B, Bauer E, Cirsi M, Kochsiek K (1993) Cytolytic cross-reactive antibodies directed against the cardiac membrane and viral proteins in coxsackievirus B3 and B4 myocarditis. Characterization and pathogenetic relevance. Circulation 87(5 suppl):IV49–1V65

    PubMed  CAS  Google Scholar 

  • Manolio TA, Baughman KL, Rodeheffer R, Pearson TA, Bristow JD, Michels VV, Abelmann WH, Harlan WR (1992) Prevalence and etiology of idiopathic dilated cardiomyopathy. Am J Cardiol 69:1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Benichou D, Couderc T, Hogle JM, Wychowski C, Van derWerf S, Girard M (1991) Use of type 1/type 2 chimeric polioviruses to study determinants of poliovirus type 1 neurovirulence in a mouse model. Virology 180:648–658

    Article  PubMed  CAS  Google Scholar 

  • Martin LR, Duke GM, Osorio JE, Hall DJ, Palmenberg AC (1996) Mutational analysis of the mengovirus poly(C) tract and surrounding heteropolymeric sequences. J Virol 70:2027–2031

    PubMed  CAS  Google Scholar 

  • Martino TA, Liu P, Petric M, Sole MJ (1995) Enteroviral myocarditis and dilated cardiomyopathy: a review of clinical and experimental studies. In: Rotbart HA (ed) Human enterovirus infections. Amer Soc Microbiol, Washington, DC, pp 291–351

    Google Scholar 

  • Matsumori A (1992) Lessons from animal experiments in myocarditis. Herz 17:107–111

    PubMed  CAS  Google Scholar 

  • Mattion NM, Reilly PA, DiMichele SJ, Crowley JC, Weeks-Levy C (1994) Attenuated poliovirus strain as a live vector: expression of regions of rotavirus outer capsid protein VP7 by using recombinant Sabin 3 viruses. J Virol 68:3925–3933

    PubMed  CAS  Google Scholar 

  • McAllister A, Tangy F, Aubert C, Brahic M (1990) Genetic mapping of the ability of Theiler’s virus to persist and demyelinate. J Virol 64:4252—4257

    PubMed  CAS  Google Scholar 

  • Meerovitch K, Nicholson R, Sonenberg N (1991) In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5’ untranslated region. J Virol 65:5895–5901

    PubMed  CAS  Google Scholar 

  • Melnick JL (1990) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. Fields BN Knipe DM Fields virology. Raven, New York, pp 549–605

    Google Scholar 

  • Michiels T, Jarousse N, Brahic M (1995) Analysis of the leader and capsid coding regions of persistent and neurovirulent strains of Theiler’s virus. Virology 214:550–558

    Article  PubMed  CAS  Google Scholar 

  • Minor PD (1992) The molecular biology of poliovaccines. J Gen Virol 73:3065–3077

    Article  PubMed  CAS  Google Scholar 

  • Minor PD, John A, Ferguson M, Icenogle JP (1986) Antigenic and molecular evolution of the vaccine strain of type 3 poliovirus during the period of excretion by a primary vaccinee. J Gen Virol 67:693–706

    Article  PubMed  CAS  Google Scholar 

  • Minor PD, Macadam AJ, Stone DM, Almond JW (1993) Genetic basis of attenuation of the Sabin oral poliovirus vaccines. Biologicals 21:357–363

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J, Gear J, Prinsloo FR, Kahn M, Kirsch ZG (1955) Myocarditis of the newborn: an outbreak in a maternity home in Southern Rhodesia associated with coxsackie group B virus infections. S Afr Med J 29:608–612

    PubMed  CAS  Google Scholar 

  • Moscufo N, Yafal AG, Rogove A, Hogle J, Chow M (1993) A mutation in VP4 defines a new step in the late stages of cell entry by poliovirus. J. Virol 67:5075–5078

    PubMed  CAS  Google Scholar 

  • Mucklebauer J, Kremer M, Minor I, Diana G, Dutko F, Groarke J, Pevear D, Rossmann M (1995) The structure of coxsackievirus B3 at 3.5 angstrom resolution. Structure 3:653–667

    Article  Google Scholar 

  • Murray MG, Bradley J, Yang XF, Wimmer E, Moss EG, Racaniello VR (1988) Poliovirus host range is determined by a short amino acid sequence in neutralization antigenic site 1. Science 241:213–215

    Article  PubMed  CAS  Google Scholar 

  • Nathanson N, Martin JR (1979) The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. Am J Epidemiol 110:672–692

    PubMed  CAS  Google Scholar 

  • Nicholson R, Pelletier J, Le SY, Sonenberg N (1991) Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J Virol 65:5886–5894

    PubMed  CAS  Google Scholar 

  • Nkowane BM, Wassilak SG, Orenstein WA, Bart KJ, Schonberger LB, Hinman AR, Kew OM (1987) Vaccine-associated paralytic poliomyelitis. United States: 1973 through 1984. JAMA 257:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Nomoto A, Omata T, Toyoda H, Kuge S, Horie H, Kataoka Y, Genba Y, Nakano Y, Imura N (1982) Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc Natl Acad Sci USA 79:5793–5797

    Article  PubMed  CAS  Google Scholar 

  • Osorio J, Hubbard G, Soike K, Girard M, vander Werf S, Moulin J, Palmenberg A (1996) Protection of non-murine mammals against encephalomyocarditis virus using a genetically engineered Mengo virus. Vaccine 14:155–161

    Article  PubMed  CAS  Google Scholar 

  • Pestova T, Hellen C, Wimmer E(1991) Translation of poliovirus RNA: role of an essential cis-acting oligopyrimidine element within the 5’ nontranslated region and involvement of a cellular 57-kilodalton protein. J Virol 65:6194–6204

    PubMed  CAS  Google Scholar 

  • Pilipenko EV, Blinov VM, Romanova LI, Sinyakov AN, Maslova SV, Agol VI (1989) Conserved structuraldomains in the 5’-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology 168:201–209

    Article  PubMed  CAS  Google Scholar 

  • Pircher H, Moskophidis D, Rohrer U, Burki K, Hengartner H, Zinkernagel RM (1990) Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346:629–633

    Article  PubMed  CAS  Google Scholar 

  • Pollard SR, Dunn G, Cammack N; Minor PD; Almond JW (1989) Nucleotide sequence of a neurovirulent variant of the type 2 oral poliovirus vaccine. J Virol 63:4949–4951

    PubMed  CAS  Google Scholar 

  • Poyry T, Hyypia T, Horsnell C, Kinnunen L, Hovi T, Stanway G (1994) Molecular analysis of coxsackievirus A16 reveals a new genetic group of enteroviruses. Virology 202:982–987

    Article  PubMed  CAS  Google Scholar 

  • Pritchard AE, Jensen K, Lipton HL (1993) Assembly of Theiler’s virus recombinants used in mapping determinants of neurovirulence. J Virol 67:3901–3907

    PubMed  CAS  Google Scholar 

  • Ramsingh AI, Collins DN (1995) A point mutation in the VP4 coding sequence of coxsackievirus B4 influences virulence. J Virol 69:7278–7281

    PubMed  CAS  Google Scholar 

  • Ramsingh A, Slack J, Silkworth J, Hixson A (1989) Severity of disease induced by a pancreatropic Coxsackie B4 virus correlates with the H-2Kq locus of the major histocompatibility complex. Virus Res 14:347–358

    Article  PubMed  CAS  Google Scholar 

  • Ramsingh A, Hixson A, Duceman B, Slack J (1990) Evidence suggesting that virulence maps to the PI region of the Coxsackievirus B4 genome. J Virol 64:3078–3081.

    PubMed  CAS  Google Scholar 

  • Ramsingh A, Araki H, Bryant S, Hixson A (1992) Identification of candidate sequences that determine virulence in Coxsackievirus B4. Virus Res 23:281–292

    Article  PubMed  CAS  Google Scholar 

  • Ramsingh AI, Caggana M, Ronstrom S (1995) Genetic mapping of the determinants of plaque morphology of coxsackievirus B4. Arch Virol 140:2215–2226

    Article  PubMed  CAS  Google Scholar 

  • Reimann BY, Zell R, Kandolf R (1991) Mapping of a neutralizing antigenic site of Coxsackievirus B4 by construction of an antigen chimera. J Virol 65:3475–3480

    PubMed  CAS  Google Scholar 

  • Ren RB, Costantini F, Gorgacz EJ, Lee JJ, Racaniello VR (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353–362

    Article  PubMed  CAS  Google Scholar 

  • Ren RB, Moss EG, Racaniello VR (1991) Identification of two determinants that attenuate vaccinerelated type 2 poliovirus. J Virol 65:1377–1382

    PubMed  CAS  Google Scholar 

  • Roesing TG, Landau BJ, Crowell RL (1979) Limited persistence of viral antigen in coxsackievirus B3 induced heart disease in mice. Proc Soc Exp Biol Med 160:382–386

    PubMed  CAS  Google Scholar 

  • Rohll JB, Percy N, Ley R, Evans DJ, Almond JW, Barclay WS (1994) The 5’-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J Virol 68:4384–4391

    PubMed  CAS  Google Scholar 

  • Roos RP, Stein S, Routbort M, Senkowski A, Bodwell T, Wollmann R (1989) Theiler’s murine encephalomyelitis virus neutralization escape mutants have a change in disease phenotype. J Virol 63:4469–4473

    PubMed  CAS  Google Scholar 

  • Ross ME, Hayashi K, Notkins AL (1974) Virus-induced pancreatic disease: alteration in concentration of glucose and amylase in blood. J Inf Dis 129:669–676

    Article  CAS  Google Scholar 

  • Sabin AB (1955) Characteristics and genetic potentialities of experimentally produced and naturally occurring variants of poliomyelitis virus. Ann NY Acad Sci 61:924–939

    Article  PubMed  CAS  Google Scholar 

  • Sabin A, Boulger L (1973) History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand 1:115–118

    Article  Google Scholar 

  • Satoh M, Tamura G, Segawa I, Hiramori K, Satodate R (1994) Enteroviral RNA in dilated cardiomyopathy. Eur Heart J 15:934–939

    PubMed  CAS  Google Scholar 

  • Schnurr DP, Cao Y, Schmidt NJ (1984) Coxsackievirus B3 persistence and myocarditis in N:NIH(S) II nu/nu and +/nu mice. J Gen Virol 65:1197–1201

    Article  PubMed  Google Scholar 

  • Semler BL, Johnson VH, Tracy S (1986) A chimeric plasmid from cDNA clones of poliovirus and coxsackievirus produces a recombinant virus that is temperature-sensitive. Proc Natl Acad Sci USA 83:1777–1781

    Article  PubMed  CAS  Google Scholar 

  • Simenhoff ML, Ulys CJ (1958) Coxsackie virus myocarditis and the newborn. A pathological survey of 4 cases. Med Proc 4:389–397

    Google Scholar 

  • Skinner MA, Racaniello VR, Dunn G, Cooper J, Minor PD, Almond JW (1989) New model for the secondary structure of the 5’ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol 207:379–392

    Article  PubMed  CAS  Google Scholar 

  • Street NE, Mosmann TR (1991) Functional diversity of T lymphocytes due to secretion of different cytokine patterns. FASEB J 5:171–177

    PubMed  CAS  Google Scholar 

  • Stroop WG, Baringer JR, Brahic M (1981) Detection of Theiler’s virus RNA in mouse central nervous system by in situ hybridization. Lab Invest 45: 504–509

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Maslova SV, Agol VI (1985) The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology 147:243–252

    Article  PubMed  CAS  Google Scholar 

  • Svitkin YV, Pestova TV, Maslova SV, Agol VI (1988) Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology 166:394–404

    Article  PubMed  CAS  Google Scholar 

  • Svitkin Y, Meerovich K, Lee H, Dholakia J, Kenan D, Agol V, Sonenberg N (1994) Internal translation initiation on poliovirus RNA: further characterization of La function in poliovirus translation in vitro. J Virol 68:1544–1550

    PubMed  CAS  Google Scholar 

  • Tatem JM, Weeks-Levy C, Georgiu A, DiMichele SJ, Gorgacz EJ, Racaniello VR, Cano FR, Mento SJ (1992) A mutation present in the amino terminus of Sabin 3 poliovirus VP1 protein is attenuating. JVirol 66:3194–3197

    CAS  Google Scholar 

  • Tilles J (1994) Efficacy of a polyvalent inactivated-virus vaccine in protecting mice from infection with clinical strains of group B coxsackieviruses. Scan J Infect Dis 26:739–74

    Article  Google Scholar 

  • Titchener PA, Jenkins O, Szopa TM, Taylor KW, Almond JW (1994) Complete nucleotide sequence of a beta-cell tropic variant of coxsackievirus B4. J Med Virol 42:369–373

    Article  PubMed  CAS  Google Scholar 

  • Tracy S, Gauntt C (1987) Phenotypic and genotypic differences among naturally occurring coxsackie virus B3 variants. Europ Heart J 8(Suppl J)445–448

    Google Scholar 

  • Tracy S, Liu HL, Chapman NM (1985) Coxsackievirus B3: primary structure of the 5’ non-coding and capsid protein-coding regions of the genome. Virus Res 3:263–270

    Article  PubMed  CAS  Google Scholar 

  • Tracy S, Chapman NM, McManus BM, Pallansch MA, Beck MA, Carstens J (1990) A molecular and serologic evaluation of enteroviral involvement in human myocarditis. J Mol Cell Cardiol 22:403–414

    Article  PubMed  CAS  Google Scholar 

  • Tracy S, Chapman NM, Tu Z (1992) Coxsackievirus B3 from an infectious cDNA copy of the genome is cardiovirulent in mice. Arch Virol 122:399–409

    Article  PubMed  CAS  Google Scholar 

  • Tracy S, Chapman NM, Rubocki RJ, Beck MA (1995) Host immune responses to enterovirus infections. In: Rotbart HA (ed)Human enterovirus infections. Amer Soc Microbiol, Washington, DC, pp l75–191

    Google Scholar 

  • Tracy S, Chapman NM, Romero J, Ramsingh AI (1996) Genetics of coxsackievirus B cardiovirulence and inflammatory heart muscle disease. Trends Microbiol 4:175–179

    Article  PubMed  CAS  Google Scholar 

  • Trousdale MD, Paque RE, Gauntt CJ (1976) Isolation of Coxsackievirus B3 temperature-sensitive mutants and their assignment to complementation groups. Biochem Biophys Res Commun 76:368–375

    Article  PubMed  CAS  Google Scholar 

  • Tu Z, Chapman NM, Hufnagel G, Tracy S, Romero JR, Barry WH, Zhao L, Currey K, Shapiro B (1995) The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5’ nontranslated region. J Virol 69:4607–4618

    PubMed  CAS  Google Scholar 

  • VanCreveld S, DeJager H (1956) Myocarditis in newborns, caused by coxsackie virus: clinical and pathological data. Ann Pediat 187:100–112

    Google Scholar 

  • VanHouten N, Bouchard PE, Moraska A, Huber SA (1991) Selection of an attenuated Coxsackievirus B3 variant, using a monoclonal antibody reactive to myocyte antigen. J Virol 65:1286–1290

    PubMed  Google Scholar 

  • vanKuppeveld FJ, Galama JM, Zoll J, Melchers WJ (1995) Genetic analysis of a hydrophobic domain of coxsackie B3 virus protein 2B: a moderate degree of hydrophobicity is required for a cis-acting function in viral RNA synthesis. J Virol 69:7782–7790

    PubMed  Google Scholar 

  • vanKuppeveld FJM, Galama JMD, Zoll J, vanden Hurk PJJC, Melchers WJG (1996) Coxsackie B3 virus protein 2B contains a cationic amphipathic helix that is required for viral RNA replication. J Virol 70:3876–3886

    PubMed  Google Scholar 

  • Vella C, Brown CL, McCarthy DA (1992) Coxsackievirus B4 infection of the mouse pancreas: Acute and persistent infection. J Gen Virol 73:1387–1394

    Article  PubMed  Google Scholar 

  • Verlinde JD, vanTongeren HAE, Kret A (1956) Myocarditis in newborns due to group B coxsackievirus: virus studies. Ann Pediat 187:113–118

    Google Scholar 

  • Wada Y; Pierce ML; Fujinami RS (1994) Importance of amino acid 101 within capsid protein VP1 for modulation of Theiler’s virus-induced disease. J Virol 68:1219–1223

    PubMed  CAS  Google Scholar 

  • Weaver CT, Hawrylowicz CM, Unanue ER (1988) T helper cell subsets require the expression of distinct costimulatory signals by antigen-presenting cells. Proc Natl Acad Sci USA 85:8181–8185

    Article  PubMed  CAS  Google Scholar 

  • Westrop GD, Wareham KA, Evans DM, Dunn G, Minor PD, Magrath DI, Taffs F, Marsden S, Skinner MA, Schild GC, Almond JW (1989) Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J Virol 63:1338–1344

    PubMed  CAS  Google Scholar 

  • Wiegers K, Uhlig H, Dernick R (1989) NAglB of poliovirus type 1: A discontinuous epitope formed by two loops of VP1 comprising residues 96-104 and 141-152. Virology 170:583–586

    Article  PubMed  CAS  Google Scholar 

  • Williams D, Olsen E (1985) Prevalence of overt dilated cardiomyopathy in two regions of England. Br Heart J 54:153–155

    Article  PubMed  CAS  Google Scholar 

  • Woodruff JF (1980) Viral myocarditis. A review. Am J Pathol 101:425–484

    PubMed  CAS  Google Scholar 

  • Woodruff JF, Kilbourne ED (1970) The influence of quantitated post-weaning undernutrition on coxsackievirus B3 infection of adult mice. I. Viral persistence and increased severity of lesions. J Infect Dis 121:137–163

    Article  PubMed  CAS  Google Scholar 

  • Woodruff JF, Woodruff JJ (1974) Involvement of T lymphocytes in the pathogenesis of coxsackie virus B3 heart disease. J Immunol 113:1726–1734

    PubMed  CAS  Google Scholar 

  • Yeates TO, Jacobson DH, Martin A, Wychowski C, Girard M, Filman DJ, Hogle JM (1991) Threedimensional structure of a mouse-adapted type 2/type 1 poliovirus chimera. EMBO J 10:2331–2341

    PubMed  CAS  Google Scholar 

  • Yim TJ, Tang S, Andino R (1996) Poliovirus recombinants expressing hepatitis B virus antigens elicited a humoral immune response in susceptible mice. Virology 218:61–70

    Article  PubMed  CAS  Google Scholar 

  • Yoon JW, Onodera T, Notkins AL (1978) Virus-induced diabetes mellitus:Beta cell damage and insulindependent hyperglycemia in mice infected with Coxsackie virus B4. J Exp Med 148:1068–1080

    Article  PubMed  CAS  Google Scholar 

  • Yoon JW, Austin M, Onodera T, Notkins AL (1979) Virus-induced diabetes mellitus isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Yoon JW, McClintock PR, Onodera T, Notkins AL (1980) Virus-induced diabetes mellitus. XVIII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J Exp Med 152:878–892

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Yousef G, Cunningham L, Blake N, Ouyang X, Bayston T, Kandolf R, Archard L (1993) Attenuation of a reactivated cardiovirulent coxsackievirus B3: the 5’-nontranslated region does not contain major attenuation determinants. J Med Virol 41:129–137

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Blake N, Ouyang X, Pandolfino Y, Morgan-Capner P, Archard L (1995) A single amino acid substitution in the capsid protein VP1 of coxsackievirus B3 (CVB3) alters plaque phenotype in Vero cells but not cardiovirulence in a mouse model. Arch Virol 140:959–966

    Article  PubMed  CAS  Google Scholar 

  • Zsofia O, Deak J, Pap A (1992) Possible role of coxsackie-B virus infection in pancreatitis. Int J Pancreatology 11:105–108

    Google Scholar 

  • Zurbriggen A, Thomas C, Yamada M, Roos RP, Fujinami RS (1991) Direct evidence of a role for amino acid 101 of VP-1 in central nervous system disease in Theiler’s murine encephalomyelitis virus infection. J Virol 65:1929–1937

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapman, N.M., Ramsingh, A.I., Tracy, S. (1997). Genetics of Coxsackievirus Virulence. In: Tracy, S., Chapman, N.M., Mahy, B.W.J. (eds) The Coxsackie B Viruses. Current Topics in Microbiology and Immunology, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60687-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60687-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64507-5

  • Online ISBN: 978-3-642-60687-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics