Skip to main content

N Uptake and Distribution in Plant Canopies

  • Chapter
Diagnosis of the Nitrogen Status in Crops

Abstract

Nitrogen (N) is often considered to be the most important limiting factor, after water deficiency, for biomass production in natural ecosystems. In arable and forage cropping, N fertilization practices can provide a sufficient N supply for plants to achieve the potential growth allowed by the amount of energy intercepted by the crop. However, to ensure that this potential yield is reached, the N inputs are often higher than the minimum required for maximum crop growth: this is particularly true because N fertilizers are relatively cheap compared to the expected economic benefits from a maximized crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agren GI (1985) Theory for growth of plants derived from the nitrogen productivity concept. Physiol Plant 64:17–28

    Article  Google Scholar 

  • Allirand JM, Gosse G, Lemaire G (1992) Influence of temperature on lucerne dry matter and nitrogen distribution. In: Scaife A (ed) Proc 2nd Congr of European Society of Agronomy,Warwick, pp 24–25

    Google Scholar 

  • Angus JF, Moncur MW (1985) Models of growth and development of wheat in relation to plant nitrogen. Aust J Agric Res 36:537–544

    Article  Google Scholar 

  • Brown RH (1978) A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci 18:93–98

    Article  CAS  Google Scholar 

  • Brown RH (1985) Growth of C3 and C4 grasses under low N levels. Crop Sci 25:954–957

    Article  Google Scholar 

  • Burns IG (1992) Influence of plant nutrient concentration on growth rate: use of a nutrient interruption technique to determine critical concentrations of N, P and K in young plants. Plant Soil 142:221–233

    Article  CAS  Google Scholar 

  • Caloin M, Yu O (1982) An extension of the logistic model of plant growth. Ann Bot 49:599–607

    Google Scholar 

  • Caloin M, Yu O (1984) Analysis of the time course change in nitrogen content of Dactylis glomerata L. using a model of plant growth. Ann Bot 54:69–76

    CAS  Google Scholar 

  • Charles-Edwards DA (1982) Physiological determinants of grop growth. Academic Press, Sydney, 161 PP

    Google Scholar 

  • Charles-Edwards DA, Stutzel H, Ferraris R, Beech DF (1987) An analysis of spatial variation in the nitrogen content of leaves from different horizons within a canopy. Ann Bot 60:421–426

    Google Scholar 

  • Ericksson T (1981) Effects of varied nitrogen stress on growth and nutrition in three Salix clones. Physiol Plant 51:423–429

    Article  Google Scholar 

  • Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age control on the allocation program. Oecologia 56:341–347

    Article  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Gastal F, Saugier B (1989) Relationships between N uptake and C assimilation in whole plants of tall fescue. Plant Cell Environ 12:407–418

    Article  Google Scholar 

  • Gastal F, Belanger G, Lemaire G (1992) A model of the leaf extension rate of tall fescue in response to nitrogen and temperature. Ann Bot 70:437–442

    CAS  Google Scholar 

  • Gosse G, Varlet-Grancher C, Bonhomme R, Chartier M, Allirand JM, Lemaire G (1986) Production maximale de matiere seche et rayonnement solaire intercepts par un couvert vegetal. Agronomie 6:47–56

    Article  Google Scholar 

  • Greenwood DJ, Neeteson J J, Draycott A (1986) Quantitative relationships for the dependence of growth rate of arable crops to their nitrogen content, dry weight and aerial environment. Plant Soil 91:281–301

    Article  Google Scholar 

  • Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  • Greenwood DJ, Gastal F, Lemaire G, Draycott A, Millard P, Neeteson JJ (1991) Growth rate and %N of field grown crops: theory and experiments. Ann Bot 67:181–190

    CAS  Google Scholar 

  • Grindlay DJC, Silvester-Bradley R, Scott RK (1993) Nitrogen uptake of young vegetative plants in relation to green area. J Sci Food Agric 63:116

    Google Scholar 

  • Guiraud G, Fardeau JC (1977) Dosage par la methodé Kjeldahl des nitrates contenus dans les sols et les vé gé taux. Ann Agron 28:329–333

    CAS  Google Scholar 

  • Gulmon SL, Chu CC (1981) The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub, Diplacus auranticus. Oecologia (Berl) 49:207–212

    Article  Google Scholar 

  • Hanway JJ (1962) Corn growth and composition in relation to soil fertility. III. Percentages of N, P and K in different plant parts in relation to stage of growth. Agron J 54:222–230

    Article  CAS  Google Scholar 

  • Hardwick RC (1987) The nitrogen content of plants and the self-thinning rule of plant ecology: a test of the core-skin hypothesis. Ann Bot 60:439–446

    Google Scholar 

  • Hirose T, Werger MJA (1987) Maximising daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in a the canopy. Oecologia 72:520–526

    Article  Google Scholar 

  • Hirose T, Werger MJA, Pons TL, vanRheenen WA (1988) Canopy structure and leaf nitrogen distribution in stand of Lysimachia vulgaris L. as influenced by stand density. Oecologia 77:145–150

    Article  Google Scholar 

  • Ingestad T (1979) Nitrogen stress in birch seedlings. II. N, K, P, Ca and Mg nutrition. Physiol Plant 45:149–157

    Article  CAS  Google Scholar 

  • Ingestad T, Lund AB (1979) Nitrogen stress in birch seedlings. I. Growth technique and growth. Physiol Plant 45:454–466

    Google Scholar 

  • Justes E, Mary B, Meynard JM, Machet JM, Thelier-Huche L (1994) Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot 74:397–407

    Article  CAS  Google Scholar 

  • Konings H (1989) Physiological and morphological differences between plants with a high NAR or a high LAR as related to environmental conditions. In: Lambers HCambridge MLKonings HPons TL (eds) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, pp 101–123

    Google Scholar 

  • Lemaire G, Chartier M (1992) Relationships between growth dynamics and nitrogen uptake for individual sorghum plants growing at different plant densities. Proc 2nd Congr of European Society of Agronomy, Warwick University, pp 98-99

    Google Scholar 

  • Lemaire G, Salette J (1984a) Relation entre dynamique de croissance et dynamique de prelevement d’azote pour un peuplement de graminees fourrageres. I. Etude de l’effet du milieu. Agronomie 4:423–430

    Article  Google Scholar 

  • Lemaire G, Salette J (1984b) Relation entre dynamique de croissance et dynamique de prelevement d’azote pour un peuplement de graminees fourrageres. II. Etude de la variability entre genotypes. Agronomie 4:431–436

    Article  Google Scholar 

  • Lemaire G, Gruz P, Gosse G, Chartier M (1985) Etude des relations entre la dynamique de prelevement d’azote et la dynamique de croissance en matiere seche d’un peuplement de luzerne (Medicago sativa L.). Agronomie 5:685–692

    Article  Google Scholar 

  • Lemaire G, Gastal F, Salette J (1989) Analysis of the effect of N nutrition on dry matter yield of a sward by reference to potential yield and optimum N content. Proc XVI Int Grassland Congr, Nice, pp 179-180

    Google Scholar 

  • Lemaire G, Onillon B, Gosse G, Chartier M, Allirand JM (1991) Nitrogen distribution within a lucerne canopy during regrowth: relation with light distribution. Ann Bot 68:483–488

    Google Scholar 

  • Lemaire G, Khaity M, Onillon B, Allirand JM, Chartier M, Gosse G (1992) Dynamics of accumulation and partitioning of N in leaves, stems and roots of lucerne (Medicago sativa L.) in a dense canopy. Ann Bot 70:429–435

    CAS  Google Scholar 

  • MacDonald AJS (1989) Phenotypic variation in growth rate as affected by N-supply: its effect on net assimilation rate (NAR), leaf weight ratio (LWR) and specific leaf area (SLA). Lambers H Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, pp 37–44

    Google Scholar 

  • Macduff JH, Wild A (1988) Changes in N03 - and K+ uptake by four species in flowing solution culture in response to increased irradiance. Plant Physiol 74:251–256

    Article  CAS  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond B 281:277–294

    Article  Google Scholar 

  • Mooney HA, Gulmon SL (1979) Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant population biology. Columbia University Press, New York, pp 316–337

    Google Scholar 

  • Philippot S, Allirand JM, Chartier M, Gosse G (1991) The role of different daily irradiations on shoot growth and root/shoot ratio in lucerne (Medicago sativa L.). Ann Bot 68:329–335

    Google Scholar 

  • Plenet D (1995) Fonctionnement des cultures de mais sous contrainte azotee. Determination et application d’un indice de nutrition. These de Docteur de l’lnstitut National Polytechnique de Lorraine, Universite de, Nancy Nancy, 115 pp

    Google Scholar 

  • Pons TL, vanRijnberk H, Scheurwater I, vander Werf A (1993) Importance of the gradient in photosynthetically active radiation in a vegetation stand for leaf nitrogen allocation in two monocotyledons. Oecologia 95:416–424

    Article  Google Scholar 

  • Poorter H (1989) Interspecific variation in relative growth rate: on ecological causes and physiological consequences. In: Lambers HCambridge MLKonings HPons TL (eds) Causes and consequences of variation in growth rate and productivity of higher plants. SPS Academic Publishing, The Hague, pp 45–68

    Google Scholar 

  • Rufty TW, Mac Kown CT, Volk RJ (1989) Effects of altered carbohydrates availability on whole-plant assimilation of 15N03 -. Plant Physiol 89:457–463

    Article  PubMed  CAS  Google Scholar 

  • Sackville-Hamilton NR, Matthew C, Lemaire G (1995) In defence of the -3/2 boundary rule: a revaluation of self-thinning concepts and status. Ann Bot 76:569–577

    Article  Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album L. and Amaranthus retroflexus L. Plant Physiol 84:959–963

    Article  PubMed  CAS  Google Scholar 

  • Sylvester-Bradley R, Stokes DT, Scott RK (1990) Aphysiological analysis of the diminishing response of winter wheat to applied nitrogen. 2. Evidence. Aspects Appl Biol 25:289–299

    Google Scholar 

  • Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Physiol 33:481–518

    Article  CAS  Google Scholar 

  • Ulrich A (1952) Physiological bases for assessing the nutritional requirements of plants. Annu Rev Plant Physiol 3:207–228

    Article  Google Scholar 

  • Voss RE, Hanway J J, Dumanil LC (1970) Relationship between grain yield and leaf N, P and K concentrations for corn and the factors that influence this relationship. Agron J 62:726–728

    Article  CAS  Google Scholar 

  • White J (1981) The allometric interpretation of the self-thinning rule. J Theor Biol 89:475–500

    Article  Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi H (1963) Intraspecific competition among higher plants. XI. Selfthinning in over-crowded pure stands under cultivated and natural conditions. J Polytechnic Institute (Osaka City University) D 14:107–129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemaire, G., Gastal, F. (1997). N Uptake and Distribution in Plant Canopies. In: Lemaire, G. (eds) Diagnosis of the Nitrogen Status in Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60684-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60684-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64506-8

  • Online ISBN: 978-3-642-60684-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics