Skip to main content

Looking at p53: Theoretical Implications and Methodological Aspects

  • Conference paper
  • 204 Accesses

Part of the Archives of Toxicology book series (TOXICOLOGY,volume 19)

Abstract

Since its discovery as a protein with a mass of 53 kD binding to simian virus’ 40 large T antigen, the p53 gene and its protein product have gained an enormous interest in the scientific community. The literature on this topic has grown exponentially (Marx, 1993) and more than 5500 papers accumulated in the MedLine within the last 5 years. First described as one more oncogene whose products cause immortalization and malignant transformation, it was later found to be just the opposite, i.e. a tumor suppressor gene, whose functional inactivation contributes to carcinogenesis. Moreover, it was found to be among the genes most frequently mutated in human cancers. Intensive research revealed that the P53 protein is a DNA binding transcription factor which is important for maintenance of the integrity of the genome, some kind of “guardian of the genome” (Lane, 1992; for reviews see Levine et al., 1991; Harris, 1993; Levine, 1995; Ko and Prives, 1996; Jacks, 1996; Arrowsmith and Morin, 1996). For epidemiologists and toxicologists, an interesting feature of p53 is that the specific mutation patterns correlate with the inducing agent, i.e. tobacco smoke will result in other types of lesions than UV light (Greenblatt et al., 1994). In this respect, analysis of p53 mutational patterns may become a tool to evaluate the consequences of noxic exposure for the genome and for cancer risk.

Keywords

  • Single Strand Conformation Polymorphism Technique
  • Noxic Exposure
  • Specific Mutation Pattern
  • Complementary Wild Type
  • Murine Skin Tumor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-60682-3_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-60682-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrowsmith CH, Morin P (1996) New insights into p53 function from structural studies. Oncogene 12: 1379–1385.

    PubMed  CAS  Google Scholar 

  • Auvinen A, Isola J, Visakorpi T, Koivula T, Virtanen S. and Hakama M (1994) Overexpression of p53 and long-term survival in colon carcinoma. Br J Cancer 70: 293–296.

    PubMed  CrossRef  CAS  Google Scholar 

  • Banks L, Matlashewski G, Crawford L (1986) Isolation of human p53 specific monoclonal antibodies and their use in the studies of human p53 expression. Eur J Biochem, 159: 529–534.

    PubMed  CrossRef  CAS  Google Scholar 

  • Borg A, Lennerstrand J, Sten mark-Askmalm M, Fernö M, Brisfors A, Öhrvik A, Stal O, Killander D, Lane D, Brundell J (1995) Prognostic significance of p53 overexpression in primary breast cancer; a novel luminometric immunoassay applicable on steroid receptor cytosols. Br J Cancer 71: 1013–1017.

    PubMed  CrossRef  CAS  Google Scholar 

  • Dix B, Robbins P, Carello S, House A, Iacopetta B (1994) Comparison of p53 gene mutation and protein overexpression in colorectal carcinomas. Br J Cancer 70: 585–590.

    PubMed  CrossRef  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery jr CA, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356: 215–221.

    PubMed  CrossRef  CAS  Google Scholar 

  • Fan S, El-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace Jr. AJ, Magrath I, Kohn KW, O’Connor PM (1994) p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54: 5824–5830.

    PubMed  CAS  Google Scholar 

  • Fisher CJ, Gillett CE, Vojtesek` B, Barnes DM, Millis RR (1994) Problems with p53 immunohistochemical staining: the effect of fixation and variation in the methods evaluation. Br J Cancer 69: 26–31.

    PubMed  CrossRef  CAS  Google Scholar 

  • Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chapuist P, Sappino AP, Limacher JM, Brons L, Benhattar J, Tada M, Van Meir EG, Estreicher A, Iggo RD (1995) A simple P53 functional assay for screening cell lines, blood and tumors. Proc Natl Acad Sci USA, 92: 3963–3967.

    PubMed  CrossRef  CAS  Google Scholar 

  • Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang W-W, Owen-Schaub LB, Roth JA (1994) Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res. 54: 2287–2291.

    PubMed  CAS  Google Scholar 

  • Harris CC (1993) P53: At the crossroad of molecular carcinogenesis and risk assessment. Science 262: 1980–1981.

    PubMed  CrossRef  CAS  Google Scholar 

  • Harris CC, Hollstein M (1993) Clinical implications of the p53 tumor-suppressor gene. New Engl J Med 329: 1318–1327.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hensel CH, Xiang RH, Sakaguchi AY, Naylor SL (1991) Use of single strand conformation polymorphism technique and PCR to detect p53 gene mutations in small cell lung cancer. Oncogene 6: 1067–1071.

    PubMed  CAS  Google Scholar 

  • Jacks T (1996) Lessons from the p53 mutant mouse. J Cancer Res Clin Oncol 122:319–327.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kanjiial S, Pierceall WE, Cummings KK, Kripke ML, Ananthaswamy HN (1993) High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: Evidence for strand bias and tumor heterogeneity. Cancer Res 53: 1–4.

    Google Scholar 

  • Kappes S, Milde-Langosch K, Kressin P, Passlack B, Dockhorn-Dworniczak B, Röhlke P, Löning T (1995) p53 mutations in ovarian tumors, detected by temperature-gradient gel electrophoresis, direct sequencing and immunohistochemistry. Int J Cancer 64: 52–59.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kasimir-Bauer S, Ottinger H, Belka C, Stellberg W, Halfmeyer K, Gewaltig I, Seeber S, Grosse-Wilde H, Scheulen ME (1996) Assessment of p53 in cancer cells by SSCP and LIA may fail to predict resistance to, or rate of apoptosis induced by chemotherapy, (submitted).

    Google Scholar 

  • Ko LJ, Prives C (1996) P53: puzzle and paradigm. Genes Development 10: 1054–1072.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kurose A, Sasaki K, Ishida Y, Shibata Y, Yanagisawa S, Kanno C, Uesugi N, Wada T, Miura Y (1995) Flow cytometric analysis of p53 expression during the cell cycle. Oncology 52: 123–127.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lane DP (1992) p53, guardian of the genome. Nature 358: 15.

    PubMed  CrossRef  CAS  Google Scholar 

  • Levine AJ (1990) The p53 protein and its interactions with the oncogene products of the small DNA tumor viruses. Virology 177: 419–426.

    PubMed  CrossRef  CAS  Google Scholar 

  • Levine AJ, Momand J, Finlay, CA (1991) The p53 tumor suppressor gene. Nature 351: 453–456.

    PubMed  CrossRef  CAS  Google Scholar 

  • Levine AJ. (1995) Tumor suppressor genes. In: Mendelsohn J, Howley PM, Israel MA, Liotta LA (eds) The molecular basis of cancer. Saunders, Philadelphia, London, Toronto, Montreal, Sydney, Tokyo, pp 86–104.

    Google Scholar 

  • Marx J (1992) Learning how to suppress cancer. Science 261: 1385–1387.

    CrossRef  Google Scholar 

  • Midgley CA, Fisher CJ, Bartek J, Vojtesek B, Lane DP, Barnes DM (1992) Analysis of p53 expression in human tumors; an antibody raised against human p53 expressed in Escherichia coli. J Cell Sci 101: 183–189.

    PubMed  CAS  Google Scholar 

  • Orita M, Sekiya T, Hayashi K (1990) DNA sequence polymorphisms in ALU repeats. Genomics: 8: 271–278.

    PubMed  CrossRef  CAS  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory handbook. Cold Spring Harbor Press, pp13.3–13.104.

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467.

    PubMed  CrossRef  CAS  Google Scholar 

  • Scholz RB, Milde-Langosch K, Jung R, Schlechte H, Kabisch H, Wagener C, LöningT (1993) Rapid screening to Tp53 mutations by temperature-gradient gel electrophoresis: a comparison with SSCP analysis. Hum Molec Genetics 2: 2155–2158.

    CrossRef  CAS  Google Scholar 

  • Slingerland JM, Minden MD, Benchimol S (1991) Mutation of the p53 gene in human acute myelogenous leukemia. Blood 77: 1500–1507.

    PubMed  CAS  Google Scholar 

  • Soto D, Sukumar S (1992) Improved detection of mutations in the p53 gene in human tumors as single-stranded conformation polymorphs and double stranded heteroduplex DNA. PCR Methods and Applications 2: 96–98.

    PubMed  CAS  Google Scholar 

  • Soussi T, Legros Y, Lubin R, Ory K, Schlichtholz B (1994) Multifactorial analysis of p53 alteration in human cancer: a review. Int J Cancer 57: 1–9.

    PubMed  CrossRef  CAS  Google Scholar 

  • Vojtesek B, Bartek J, Midgley CA, Lane DP (1992) An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods 151: 237–244.

    PubMed  CrossRef  CAS  Google Scholar 

  • Wild CP, Ridanpää M, Antila S, Lubin R, Soussi T, Husgafvel-Pursiainen K, Vainio H (1995) p53 antibodies in the sera of lung cancer patients: Comparison with p53 mutations in the tumor tissue. Int J Cancer 64: 176–181.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Opalka, B., Kasimir-Bauer, S. (1997). Looking at p53: Theoretical Implications and Methodological Aspects. In: Seiler, J.P., Vilanova, E. (eds) Applied Toxicology: Approaches Through Basic Science. Archives of Toxicology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60682-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60682-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64505-1

  • Online ISBN: 978-3-642-60682-3

  • eBook Packages: Springer Book Archive