Skip to main content

Cortical Feedforward and Cortical Feedback Neural Systems in Alzheimer’s Disease

  • Conference paper

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

This chapter provides a brief review of the principles of organization that relate to long association axons systems in the cerebral cortex. In particular, feedforward sensory systems are traced to their endstations in the entorhinal/hippocampal cortex, the amygdala and the nucleus basalis of Meynert. Feedback projections to the cerebral cortex from these limbic structures are also highlighted. These cortical connections are discussed relative to the topography of pathology in Alzheimer’s disease and the fact that neurofibrillary tangles invariantly affect these cortical systems early in the illness. It is argued that the co-occurrence of pathology in the endstations of feedforward systems and the origin of initial feedback systems is coupled tightly to alterations of memory in Alzheimer’s disease and other cognitive changes associated with the disorder. Widespread association cortex pathology, seen at endstage Alzheimer’s disease, is related likely to degree, or density, of impairment in the disorder, but may be secondary to the behaviorally disruptive consequences of early and invariant limbic system pathology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fasciularis). J Comp Neurol 230: 465 – 496

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed.) The amygdala. Wiley-Liss, New York, pp 1 – 66

    Google Scholar 

  • Arendt T, Bigi V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61: 101 – 108

    Article  CAS  Google Scholar 

  • Arendt T, Bigl V, Arendt A, Tennstedt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14: 1 – 14

    Article  PubMed  CAS  Google Scholar 

  • Arnold S, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuoranatomical distribution of neurofibrillary tangles and neuritic plaques in the central cortex of patients with Alzheimer’s disease. Cereb Cortex 1: 103 – 116

    Article  PubMed  CAS  Google Scholar 

  • Asanuma C (1989) Axonal arborizations of a magnocellular basal nucleus input and their relation to the neurons in the thalamic reticular nucleus of rats. Proc Natl Acad Sci USA 86: 4746 – 4750

    Article  PubMed  CAS  Google Scholar 

  • Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252: 415 – 422

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1985) On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol (Berl) 68: 325 – 332.

    Article  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239 – 259

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6 – 31.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8: 4007 – 4026.

    PubMed  CAS  Google Scholar 

  • Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8: 521 – 545.

    Article  PubMed  CAS  Google Scholar 

  • Damasio AR (1988) The brain binds entities and events by multiregional activation from convergence zones. Neural Comp 1: 123 – 132

    Article  Google Scholar 

  • Damasio AR (1989) The time-locked multiregional retroactivation: A systems level proposal for the neural substrates of recall and recognition. Cognition 33: 25 – 62.

    Article  PubMed  CAS  Google Scholar 

  • Damasio AR (1994) Descartes’ Error: Emotion, reason, and the human brain. Grosset/Putnam, New York

    Google Scholar 

  • Davies P, Malone AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2: 1403

    Article  PubMed  CAS  Google Scholar 

  • De Kosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann Neurol 27: 457 – 464

    Article  Google Scholar 

  • Divac I (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brain stem and olfactory bulb: Review of some functional correlates. Brain Res 93: 385 – 398

    Article  PubMed  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1 – 47

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 4: 327 – 388

    Article  Google Scholar 

  • Galaburda AM, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221: 169 – 184

    Article  PubMed  CAS  Google Scholar 

  • Geschwind N (1965) Disconnection syndromes in animals and man. Brain 88: 237 – 294

    Article  PubMed  CAS  Google Scholar 

  • Geula C, Mesulam M-M (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6: 165 – 177

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Ann Rev Neurosci 11: 137 – 156

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosc, 16: 4491 – 4500

    Google Scholar 

  • Gross CG (1992) Representation of visual stimuli in inferior temporal cortex. Phil Trans R Soc Lond 335: 3 – 10

    Article  CAS  Google Scholar 

  • Hamos JE, Degennaro LJ, Drachman DA (1989) Synaptic loss in Alzheimer’s disease and other dementias. Neurology 39: 355 – 361

    PubMed  CAS  Google Scholar 

  • Herzog AG, Van Hoesen GW (1976) Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res 115: 57 – 69

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1994) The cellular basis of cortical disconnection in Alzheimer disease and related dementing conditions. In: Terry RD, Katzman R, Bick KL (eds.) Alzheimer disease. Raven Press, New York, pp 197 – 229

    Google Scholar 

  • Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301: 55 – 64

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301: 44 – 54

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease cell specific pathology isolates the hippocampal formation. Science 225: 1168 – 1170

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472 – 481

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Kromer LJ, Van Hoesen GW (1988) A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450: 392 – 397

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, West HL, Gómez-Isla T, Mui S (1995) Quantitative neuropathology in Alzheimer’s disease: Neuronal loss in high-order association cortex parallels dementia. In: Iqbal K, Mortimer JA, Winblad B, Wisniewski HM (eds.) Research advances in Alzheimer’s disease and related disorders. John Wiley & Sons, New York, pp 453 – 460

    Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey. II. Cortical afferents. J Comp Neurol 264: 326 – 355

    Article  PubMed  Google Scholar 

  • Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162: 285 – 308

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (1990) Determinants of the cytoarchitecture of the cerebral cortex. In: Edelman GM, Gall WE, Cowan WM (eds.) Signal and sense. Wiley-Liss, New York, pp 3 – 49

    Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 37 – 56

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167: 385 – 420

    Article  PubMed  CAS  Google Scholar 

  • Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to the frontal and parietal cortex in the rhesus monkey. Science 187: 660 – 662

    Article  PubMed  CAS  Google Scholar 

  • Kosel KC, Van Hoesen GW, Rosene DL (1982) Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244: 201 – 213

    Article  PubMed  CAS  Google Scholar 

  • Kromer Vogt LJ, Hyman BT, Van Hoesen GW, Damasio AR (1990) Pathological alterations in the amygdala in Alzheimer’s disease. Neuroscience 37: 377 – 385

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Hallanger AE, Wainer BH (1987) Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci Lett 74: 7 – 13

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Terry RD, Alford M, De Teresa R, Hansen LA (1991) Cortical and subcortical patterns of synaptophysin-like immunoreactivity in Alzheimer’s disease. Am J Pathol 138: 235 – 246

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch.4) in the rhesus monkey. Brain Res 107: 253 – 274

    Google Scholar 

  • Mesulam M-M, Van Hoesen GW (1976) Acetylcholinesterase containing basal forebrain neurons in the rhesus monkey project to neocortex. Brain Res 109: 152 – 157

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (subsantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214: 170 – 197

    Article  PubMed  CAS  Google Scholar 

  • Pandya DN, Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Res. 13: 13 – 36

    Article  PubMed  CAS  Google Scholar 

  • Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. Cereb Cortex 4: 3 – 61

    Google Scholar 

  • Pearson RCA, Gather KC, Bridal P, Power TPS (1983) The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res 259: 132 – 136

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1: 1242 – 1259

    PubMed  CAS  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and termination of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179: 3 – 20

    Article  PubMed  CAS  Google Scholar 

  • Rockland KS, Pandya DN (1981) Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus. Brain Res 212: 249 – 270

    CAS  Google Scholar 

  • Rockland KS, Drash GW (1996) Collateralized divergent feedback connections that target multiple cortical areas. J Comp Neurol 373: 529 – 548

    Article  PubMed  CAS  Google Scholar 

  • Rockland KS, Van Hoesen GW (1994) Direct temporal-occipital feedback connections to striate cortex (VI) in the Macaque monkey. Cereb Cortex 4: 300 – 313

    Article  PubMed  CAS  Google Scholar 

  • Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198: 315 – 317

    Article  PubMed  CAS  Google Scholar 

  • Suzuki WA, Amaral DG (1994) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14: 1856 – 1877

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP (1991) Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 41: 572 – 580

    Article  Google Scholar 

  • Tourtellotte WG, Van Hoesen GW, Hyman BT, Tikoo RK, Damasio AR (1989) Alz-50 immunoreactivity in the thalamic reticular nucleus in Alzheimer’s disease. Brain Res 515: 227 – 234

    Article  Google Scholar 

  • Van Essen DC, Felleman DJ, De Yoe EA, Olavarria J, Knierim J (1990) Modular and hierarchical organization of extrastriate visual cortex in the Macaque monkey. Cold Spring Harbor Symp Quant Biol 3: 679 – 696

    Google Scholar 

  • Van Hoesen GW (1981) The differential distribution, diversity and sprouting of cortical projections to the amygdala in the rhesus monkey. In: Ben-Ari Y (ed) The amygdaloid complex. Amsterdam, Elsevier/North Holland, pp 77 – 90

    Google Scholar 

  • Van Hoesen GW (1982) The parahippocampal gyrus. Trends Neurosci 5: 345 – 350

    Article  Google Scholar 

  • Van Hoesen GW (1993) The modern concept of association cortex. Curr Opinion Neurobiol 3: 150–154 Van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1: 1 – 8

    Google Scholar 

  • Vermersch P, Frigard B, Delacourte A (1992) Mapping of neurofibrillary degeneration in Alzheimer’s disease — evaluation of heterogeneity using the quantification of abnormal Tau proteins. Acta Neu-ropathologica, 85: 48 – 54

    CAS  Google Scholar 

  • Wenk H, Bigl V, Meyer V (1980) Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Res Rev 2: 295 – 316

    Article  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, De Long MR (1981) Alzheimer’s disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122 – 126

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, De Long MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215: 1237 – 1239

    Article  PubMed  CAS  Google Scholar 

  • Wilcock GK, Esiri MM, Bowen DM, Smith CCT (1983) The nucleus basalis in Alzheimer’s disease: cell counts and cortical biochemistry. Neuropathol Appl Neurobiol 9: 175 – 179

    Article  PubMed  CAS  Google Scholar 

  • Zeki SM (1975) The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. Cold Spring Harbor Symp Quant Biol 40: 591 – 600

    Google Scholar 

  • Zeki S (1990) Functional specialization in the visual cortex: The generation of separate constructs and their multistage integration. In: Edelman GM, Gall WE, Cowan WM (eds.). Signal and sense. Wiley-Liss, New York, pp 85 – 130

    Google Scholar 

  • Zeki S (1993) The visual association cortex. Curr Opinion Neurobiol 3: 155 – 159

    Article  CAS  Google Scholar 

  • Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335: 311 – 317

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Hoesen, G.W. (1997). Cortical Feedforward and Cortical Feedback Neural Systems in Alzheimer’s Disease. In: Hayman, B.T., Duyckaerts, C., Christen, Y. (eds) Connections, Cognition and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60680-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60680-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64504-4

  • Online ISBN: 978-3-642-60680-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics