Skip to main content

Regulation of phosphorylation pathways by p21 GTPases

The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways

  • Chapter
EJB Reviews 1996

Part of the book series: EJB Reviews ((EJB REVIEWS,volume 1996))

Abstract

The oncogenic Ras p21 GTPases regulate phosphorylation pathways that underlie a wealth of activities, including growth and differentiation, in organisms ranging from yeast to human. In metazoa, growth factors trigger conversion of Ras from an inactive GDP-bound form to an active GTP-bound form. This activation of Ras leads to activation of Raf. Raf is one of the initial kinases in the cytoplasmic mitogen-activated protein kinase (MAPK) cascade, involving extracellular-signal-regulated kinases (ERK), which culminates in nuclear transcription. The Ras-related subfamily of Rho p21s, including Rho, Rac and Cdc42 are similarly active in their GTP-bound forms. These p21s mediate growth-factor-induced morphological changes involving actin-based cellular structures. For example, in mammalian fibroblasts, Rho mediates the formation of cytoskeletal stress fibres induced by lysophosphatidic acid, while Rac mediates the formation of membrane ruffles induced by platelet-derived growth factor, and Cdc42 mediates the formation of peripheral filopodia by bradykinin. In some cases, factor-induced Rac activation results in Rho activation, and factor-induced Cdc42 activation leads to Rac activation, as determined by specific morphological changes. Although separate Cdc42/Rac and Rac/Rho hierarchies exist, these might not extend into a linear form (i.e. Cdc42→Rac→Rho) since Cdc42 and Rho activities may be competitive or even antagonistic. Thus Cdc42-mediated formation of filopodia is accompanied by loss of stress fibres (whose formation is mediated by Rho). Recently, mammalian kinases that bind to the GTP-bound forms of Rho p21s have been isolated. These kinases include the p21-activated serine/threonine kinase (PAK), which is stimulated by binding to Cdc42 and Rac, and the Rho-binding serine/threonine kinase (ROK), which is not as strongly stimulated by binding. These kinases act as effectors for their p21 partners since they can directly affect the reorganization of the relevant actin-containing structures. ROK promotes the formation of Rho-induced actin-containing stress fibres and focal-adhesion complexes, to which the ends of the stress fibres attach. PAK stimulates the disassembly of stress fibres, which has been shown to accompany formation of Cdc42-induced peripheral-actin-containing structures, including filopodia, which with Rac-induced membrane ruffles play a role in cell movement. PAK also fosters loss of focal-adhesion complexes. Thus, there is cooperation between different Rho p21s as well as antagonism, with their associated kinases having a role in the integration of the reorganization of the actin cytoskeleton. The similarity of PAK to the Saccharomyces cerevisiae kinase Ste20p, which initiates the yeast mating/pheromone MAPK cascade, led to experiments showing that Cdc42 regulates Ste20p in this MAPK pathway. This similarity has also led to the demonstration that mammalian Cdc42 and Rac can signal to the nucleus through MAPK pathways. However, c-Jun N-terminal kinase (JNK, stress-activated protein kinase) rather than ERK, is involved. PAK have been implicated in the JNK pathway, but their exact roles are uncertain. Thus members of the Rho subfamily, and kinases that bind to these p21s are intimately involved in immediate morphological processes as well as long-term transcriptional events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACK:

activated Cdc42-binding kinase

Bcr:

breakpoint cluster region gene product

ERK:

extracellular-signal-regulated kinase

GEF:

guanine-nucleotide-exchange factor

JNK:

c-Jun N-terminal kinase

MAPK:

mitogen-activated protein kinase

MBS:

myosin-binding subunit of myosin phosphatase

MLC:

myosin light chain

PAK:

p21 (Cdc42/Rac)-activated kinase

PAM:

peripheral actin microspikes

PDGF:

platelet-derived growth factor

PH:

pleckstrin homology

PKC:

protein kinase C

PKN:

protein kinase N

ROK:

Rho-binding kinase

RTK:

receptor tyrosine kinase

SH:

Src-homology region

SRE:

serum-response element

EGF:

epidermal-growth factor

GAP:

GTPase-activating protein

FAK:

focal-adhesion kinase

PYK:

proline-rich tyrosine kinase

MST:

mammalian sterile-twenty-like

References

  • Albrecht-Buehler, G. (1976) Filopodia of spreading 3T3 cells. Do they have a substrate-exploring function? J. Cell Biol. 69, 275–286.

    PubMed  CAS  Google Scholar 

  • Akada, R., Kallal, L., Johnson, D. I. & Kurjan, J. (1996) Genetic relationships between the G protein βγ complex, Ste5p, Ste20p and Cdc42p: investigation of effector roles in the yeast pheromone response pathway, Genetics 143, 103–117.

    PubMed  CAS  Google Scholar 

  • Amano, M., Mukai, H., Ono, Y., Chihara, K., Matsui, T., Hamajima, Y., Okawa, K., Iwamatsu, A. & Kaibuchi, K. (1996) Identification of a putative target for Rho as the serine-threonine kinase protein kinase N, Science 271, 648–650.

    PubMed  CAS  Google Scholar 

  • Aspenstrom, P., Lindberg, U. & Hall, A. (1996) Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome, Curr. Biol. 6, 70–75.

    PubMed  CAS  Google Scholar 

  • Bagrodia, S., Derijard, B., Davis, R. J. & Cerione, R. A. (1995a) Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation, J. Biol. Chem. 270, 27995–27998.

    PubMed  CAS  Google Scholar 

  • Bagrodia, S., Taylor, S. J., Creasy, C. L., Chernoff, J. & Cerione, R. A. (1995b) Identification of a mouse p21(cdc42/rac) activated kinase, J. Biol. Chem. 270, 22731–22737.

    PubMed  CAS  Google Scholar 

  • Bar-Sagi, D. & Feramisco, J. R. (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by Ras proteins, Science 233, 1061–1068.

    PubMed  CAS  Google Scholar 

  • Benner, G. E., Dennis, P. B. & Masaracchia, R. A. (1995) Activation of an S6/H4 kinase (PAK-65) from human placenta by intramolecular and intermolecular autophosphorylation, J. Biol. Chem. 270, 21121–21128.

    PubMed  CAS  Google Scholar 

  • Boguski, M. S. & McCormick, F. (1993) Proteins regulating Ras and its relatives, Nature 366, 643–654.

    PubMed  CAS  Google Scholar 

  • Bokoch, G. M., Vlahos, C. J., Wang, Y., Knaus, U. G. & Traynorkaplan, A. E. (1996) Rac GTPase interacts specifically with phosphatidylinositol 3-kinase, Biochem. J. 315, 775–779.

    PubMed  CAS  Google Scholar 

  • Brook, J. D., McCurrach, M. E., Harley, H. G., Buckler, A. J., Church, D., Aburatani, H., Hunter, K., Stanton, V. P., Thirion, J. P., Hudson, T., Sohn, R., Zemelman, B., Snell, R. G., Rundle, S. A., Crow, S., Davies, J., Shelbourne, P., Buxton, J., Jones, C., Juvonen, V., Johnson, K., Harper, P. S., Shaw, D. J. & Housman, D. E. (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member, Cell 68, 799–808.

    PubMed  CAS  Google Scholar 

  • Brown, J. L., Stowers, L., Baer, M., Trejo, J., Coughlin, S. & Chant, J. (1996) Human Ste20 homolog hPAK1 links GTPases to the JNK MAP kinase pathway, Curr. Biol. 6, 598–605.

    PubMed  CAS  Google Scholar 

  • Burbelo, P. D., Drechsel, D. & Hall, A. (1995) A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases, J. Biol Chem. 270, 29071–29074.

    PubMed  CAS  Google Scholar 

  • Burridge, K., Turner, C. E. & Romer, L. H. (1992) Tyrosine phosphorylation of paxillin and ppl25(FAK) accompanies cell adhesion to extracellular matrix — a role in cytoskeletal assembly, J. Cell Biol. 119, 893–903.

    PubMed  CAS  Google Scholar 

  • Bush, E. W., Taft, C. S., Meixell, G. E. & Perryman, M. B. (1996) Overexpression of myotonic-dystrophy kinase in BC3H1 cells induces the skeletal-muscle phenotype, J. Biol Chem. 271, 548–552.

    PubMed  CAS  Google Scholar 

  • Cano, E. & Mahadevan, L. C. (1995) Parallel signal processing among mammalian MAPKs, Trends Biochem. Sci. 20, 117–122.

    PubMed  CAS  Google Scholar 

  • Cerione, R. A. & Zheng, Y. (1996) The dbl family of oncogenes, Curr. Opin. Cell Biol. 8, 216–222.

    PubMed  CAS  Google Scholar 

  • Chardin, P., Boquet, P., Madaule, P., Popoff, M. R., Rubin, E. J. & Gill, D. M. (1989) The mammalian G-protein RhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in vero cells, EMBO J. 8, 1087–1092.

    PubMed  CAS  Google Scholar 

  • Chen, W., Chen, S., Yap, S. F. & Lim, L. (1996) The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRac1 and CDC42Ce at hypodermal cell boundaries during embryo elongation, J. Biol Chem. 271, 26362–26368.

    PubMed  CAS  Google Scholar 

  • Chien, C. B., Rosenthal, D. E., Harris, W. A. & Holt, C. E. (1993) Navigational errors made by growth cones without filopodia in the embryonic Xenopus brain, Neuron 11, 237–251.

    PubMed  CAS  Google Scholar 

  • Chong, L. D., Traynor Kaplan, A., Bokoch, G. M. & Schwartz, M. A. (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells, Cell 79, 507–513.

    PubMed  CAS  Google Scholar 

  • Choi, K. Y., Stratterberg, B., Lyons, D. M. & Elion, E. A. (1994) Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae, Cell 78, 499–512.

    PubMed  CAS  Google Scholar 

  • Chrzanowska-Wodnicka, M. & Burridge, K. (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions, J. Cell Biol. 133, 1403–1415.

    PubMed  CAS  Google Scholar 

  • Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., Miki, T. & Gutkind, J. S. (1995) The small GTP-binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signaling pathway, Cell 81, 1137–1146.

    PubMed  CAS  Google Scholar 

  • Coso, O. A., Teramoto, H., Simonds, W. F. & Gutkind, J. S. (1996) Signaling from G-protein-coupled receptors to c-jun kinase involves βγ-subunits of heterotrimeric G-proteins acting on a Ras and Rac1-dependent pathway, J. Biol. Chem. 271, 3963–3966.

    PubMed  CAS  Google Scholar 

  • Creasy, C. L. & Chernoff, J. (1995) Cloning and characterization of a human protein kinase with homology to Ste20, J. Biol. Chem. 270, 21695–21700.

    PubMed  CAS  Google Scholar 

  • Cvrckova, E., De Virgilio, C., Manser, E., Pringle, J. R. & Nasmyth, K. (1995) Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast, Genes & Dev. 9, 1817–1830.

    CAS  Google Scholar 

  • Diekmann, D., Brill, S., Garrett, M. D., Totty, N., Hsuan, J., Monfries, C., Hall, C., Lim, L. & Hall, A. (1991) Bcr encodes a GTPase-activating protein for p21rac, Nature 351, 400–402.

    PubMed  CAS  Google Scholar 

  • Elion, E. A. (1995) Ste5 — a meeting place for MAP kinases and their associates, Trends Cell Biol. 5, 322–327.

    PubMed  CAS  Google Scholar 

  • Friesen, H., Lunz, R., Doyle, S. & Segall, J. (1994) Mutation of the SPS1-encoded protein kinase of Saccharomyces cerevisiae leads to defects in transcription and morphology during spore formation, Genes & Dev. 8, 2162–2175.

    CAS  Google Scholar 

  • Frost, J. A., Xu, S. C., Hutchison, M. R., Marcus, S. & Cobb, M. H. (1996) Actions of Rho-family small G-proteins and p21-activated protein kinases on mitogen activated protein kinase family members, Mol. Cell Biol. 16, 3707–3713.

    PubMed  CAS  Google Scholar 

  • Galisteo, M. L., Chernoff, J., Su, Y.-C., Skolnik, E. Y. & Schlessinger, J. (1996) The adaptor protein Nck links receptor tyrosine kinases with the serine threonine kinase PAK1, J. Biol. Chem. 271, 20997–21000.

    PubMed  CAS  Google Scholar 

  • Gilmore, A. P. & Burridge, K. (1996) Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4,5-bisphosphate, Nature 381, 531–535.

    PubMed  CAS  Google Scholar 

  • Glise, B., Bourbon, H. & Noselli, S. (1995) Hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement, Cell 83, 451–461.

    PubMed  CAS  Google Scholar 

  • Hall, A. (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton, Annu. Rev. Cell Biol. 10, 31–54.

    PubMed  CAS  Google Scholar 

  • Harden, N., Loh, H. Y., Chia, W. & Lim, L. (1995) A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila, Development (Camb.) 121, 903–914.

    CAS  Google Scholar 

  • Harden, N., Lee, J., Loh, H. Y., Ong, Y. M., Tan, I., Leung, T., Manser, E. & Lim, L. (1996) A Drosophila homolog of the Rac-activated and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures, Mol. Cell Biol. 16, 1896–1908.

    PubMed  CAS  Google Scholar 

  • Hart, M. J., Eva, A., Evans, T., Aaronson, S. A. & Cerione, R. A. (1991) Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product, Nature 354, 311–314.

    PubMed  CAS  Google Scholar 

  • Hawkins, P. T., Eguinoa, A., Qiu, R. G., Stokoe, D., Cooke, F. T., Walters, R., Wennstrom, S., Claesson Welsh, L., Evans, T., Symons, M. & Stephens, L. (1995) PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase, Curr. Biol. 5, 393–403.

    PubMed  CAS  Google Scholar 

  • Herskowitz, I. (1995) MAP kinase pathways in yeast: for mating and more, Cell 80, 187–197.

    PubMed  CAS  Google Scholar 

  • Hill, C. S., Wynne, J. & Treisman, R. (1995) The Rho family GTPases RhoA, Racl, and Cdc42Hs regulate transcriptional activation by SRF, Cell 81, 1159–1170.

    PubMed  CAS  Google Scholar 

  • Hirata, K., Kikuchi, A., Sasaki, T., Kuroda, S., Kaibuchi, K., Matsuura, Y., Seki, H., Saida, K. & Takai, Y. (1992) Involvement of Rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction, J. Biol. Chem. 267, 8719–8722.

    PubMed  CAS  Google Scholar 

  • Hoehn, G. T., Stokland, T., Amin, S., Ramirez, M., Hawkins, A., Griffin, C. A., Small, D. & Civin, C. I. (1996) Tnk1: a novel intracellular tyrosine kinase gene isolated from human umbilical cord blood CD34+/LinCD38- stem/progenitor cells, Oncogene 12, 903–913.

    PubMed  CAS  Google Scholar 

  • Hynes, R. O. & Lander, A. D. (1992) Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons, Cell 68, 303–322.

    PubMed  CAS  Google Scholar 

  • Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., Yamamoto, T. & Aizawa, S. (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice, Nature 377, 539–544.

    PubMed  CAS  Google Scholar 

  • Ishizaki, T., Maekawa, M., Fujisawa, K., Okawa, K., Iwamatsu, A., Fujita, A., Watanabe, N., Saito, Y., Kakizuka, A., Morii, N. & Narumiya, S. (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa ser/thr protein kinase homologous to myotonic dystrophy kinase, EMBO J. 15, 1885–1893.

    PubMed  CAS  Google Scholar 

  • Jakobi, R., Chen, C., Tuazon, P. T. & Traugh, J. A. (1996) Molecular cloning and sequencing of the cytostatic G protein-activated protein kinase PAK I, J. Biol Chem. 271, 6206–6211.

    PubMed  CAS  Google Scholar 

  • Jalink, K., van Corven, E. J., Hengeveld, T., Morii, N., Narumiya, S. & Moolenaar, W. H. (1994) Inhibition of lysophosphatidate-and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho, J. Cell Biol. 126, 801–810.

    PubMed  CAS  Google Scholar 

  • Jimenez, B., Arends, M., Esteve, P., Perona, R., Sanchez, R., Ramon, C., Wyllie, A. & Lacal, J. C. (1995) Induction of apoptosis in NIH3T3 cells after serum deprivation by overexpression of Rho-p21, a GTPase protein of the Ras superfamily, Oncogene 10, 811–816.

    PubMed  CAS  Google Scholar 

  • Johnson, L. N., Noble, M. E. M. & Owen, D. J. (1996) Active and inactive protein kinases — structural basis for regulation, Cell 85, 149–158.

    PubMed  CAS  Google Scholar 

  • Joneson, T., White, M. A., Wigler, M. H. & Bar-Sagi, D. (1996) Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras, Science 271, 810–812.

    PubMed  CAS  Google Scholar 

  • Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation, Genes & Dev. 9, 534–546.

    CAS  Google Scholar 

  • Kamada, Y., Qadota, H., Python, C. P., Anraku, Y., Ohya, Y. & Levin, D. E. (1996) Activation of yeast protein kinase C by Rho1 GTPase, J. Biol. Chem. 271, 9193–9196.

    PubMed  CAS  Google Scholar 

  • Kao, L. R., Peterson, J., Ji, R., Bender, L. & Bender, A. (1996) Interactions between the ankyrin repeat-containing protein Akr1p and the pheromone response pathway in Saccharomyces cerevisiae, Mol. Cell. Biol. 16, 168–178.

    PubMed  CAS  Google Scholar 

  • Katz, P., Whalen, G. & Kehrl, J. H. (1994) Differential expression of a novel protein kinase in human B lymphocytes — preferential localization in the germinal centre, J. Biol. Chem. 269, 16802–16809.

    PubMed  CAS  Google Scholar 

  • Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M. S. & Der, C. J. (1995) Activation of Rac1, RhoA, and mitogen activated protein kinases is required for Ras transformation, Mol. Cell. Biol. 15, 6443–6453.

    PubMed  CAS  Google Scholar 

  • Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J. H., Nakano, T., Okawa, K., Iwamatsu, A. & Kaibuchi, K. (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase), Science 273, 245–248.

    PubMed  CAS  Google Scholar 

  • Kitazawa, T., Masuo, M. & Somlyo, A. P. (1991) G-protein-mediated inhibition of myosin light chain phosphatase in vascular smooth muscle, Proc. Natl Acad. Sci. USA 88, 9307–9310.

    PubMed  CAS  Google Scholar 

  • Kozma, R., Ahmed, S., Best, A. & Lim, L. (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts, Mol. Cell. Biol. 15, 1942–1952.

    PubMed  CAS  Google Scholar 

  • Kozma, R., Ahmed, S., Best, A. & Lim, L. (1996) The GTPase activating protein n-chimaerin co-operates with Racl and Cdc42Hs to induce the formation of lamellipodia and filopodia, Mol. Cell. Biol. 16, 5069–5080.

    PubMed  CAS  Google Scholar 

  • Lamarche, N. & Hall, A. (1994) GAPs for Rho-related GTPases, Trends Genet. 10, 436–440.

    PubMed  CAS  Google Scholar 

  • Leberer, E., Dignard, D., Harcus, D., Thomas, D. Y. & Whiteway, M. (1992) The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein βγ-subunits to downstream signaling components, EMBO J. 11, 4815–4824.

    PubMed  CAS  Google Scholar 

  • Leberer, E., Dignard, D., Harcus, D., Hougan, L., Whiteway, M. & Thomas, D. Y. (1993) Cloning of Saccharomyces cerevisiae Ste5 as a suppressor of a Ste20 protein kinase mutant — structural and functional similarity of Ste5 to Far1, Mol. & Gen. Genet. 241, 241–254.

    CAS  Google Scholar 

  • Leeuw, T., Fourestlieuvin, A., Wu, C. L., Chenevert, J., Clark, K., Whiteway, M., Thomas, D. Y. & Leberer, E. (1995) Pheromone response in yeast — association of Bem1p with proteins of the MAP kinase cascade and actin, Science 270, 1210–1213.

    PubMed  CAS  Google Scholar 

  • Leung, T., Manser, E., Tan, L. & Lim, L. (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes, J. Biol. Chem. 270, 29051–29054.

    PubMed  CAS  Google Scholar 

  • Leung, T., Chen, X., Manser, E. & Lim, L. (1996) The p160 RhoA-binding kinase ROKα is a member of a kinase family and is involved in the reorganization of the cytoskeleton, Mol. Cell. Biol. 16, 5313–5327.

    PubMed  CAS  Google Scholar 

  • Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J. M., Plowman, G. D., Rudy, B. & Schlessinger, J. (1995) Protein-tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions, Nature 376, 737–745.

    PubMed  CAS  Google Scholar 

  • Lim, L., Hall, C., Leung, T. & Manser, E. (1995) The chimaerin and BCR families, in Guidebook to the small GTPases (Zerial, M. & Huber, L. A., eds) pp. 246–260, Oxford University Press, Oxford.

    Google Scholar 

  • Malcolm, K. C., Ross, A. H., Qiu, R.-G., Symons, M. & Exton, J. H. (1994) Activation of rat liver phospholipase D by the small GTP-binding protein RhoA, J. Biol. Chem. 269, 25951–25954.

    PubMed  CAS  Google Scholar 

  • Manser, E., Leung, T., Monfries, C., Teo, M., Hall, C. & Lim, L. (1992) Diversity and versatility of GTPase activating proteins for the p21rho subfamily of Ras G proteins detected by a novel overlay assay, J. Biol. Chem. 267, 16025–16028.

    PubMed  CAS  Google Scholar 

  • Manser, E., Leung, T., Salihuddin, H., Tan, L. & Lim, L. (1993) A nonreceptor tyrosine kinase that inhibits the GTPase activity of p21Cdc42, Nature 363, 364–367.

    PubMed  CAS  Google Scholar 

  • Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1, Nature 367, 40–46.

    PubMed  CAS  Google Scholar 

  • Manser, E., Chong, C., Zhao, Z. S., Leung, T., Michael, G., Hall, C. & Lim, L. (1995) Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family, J. Biol. Chem. 270, 25070–25078.

    PubMed  CAS  Google Scholar 

  • Marcus, S., Polverino, A., Chang, E., Robbins, D., Cobb, M. H. & Wigler, M. H. (1995) Shk1, a homolog of the Saccharomyces cerevisiae Ste20 and mammalian p65PAK protein kinases, is a component of a Ras/Cdc42 signaling module in the fission yeast Schizosaccharomyces pombe, Proc. Natl Acad. Sci. USA 92, 6180–6184.

    PubMed  CAS  Google Scholar 

  • Marshall, C. J. (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase, Curr. Opin. Genet. Dev. 4, 82–89.

    PubMed  CAS  Google Scholar 

  • Marshall, C. J. (1996) Ras effectors, Curr. Opin. Cell Biol. 8, 197–204.

    PubMed  CAS  Google Scholar 

  • Martin, G. A., Bollag, G., McCormick, F. & Abo, A. (1995) A novel serine kinase activated by Rac1/Cdc42Hs-dependent autophosphorylation is related to PAK65 and STE20, EMBO J. 14, 1970–1978.

    PubMed  CAS  Google Scholar 

  • Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A. & Kaibuchi, K. (1996) Rho-associated kinase, a novel serine threonine kinase, as a putative target for the small GTP-binding protein Rho, EMBO J. 15, 2208–2216.

    PubMed  CAS  Google Scholar 

  • McCormick, F. (1994) Activators and effectors of Ras p21 proteins, Curr. Opin. Genet. Dev. 4, 71–76.

    PubMed  CAS  Google Scholar 

  • Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs, Cell 81, 1147–1157.

    PubMed  CAS  Google Scholar 

  • Mosch, H., Roberts, R. L. & Fink, G. R. (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae, Proc. Natl Acad. Sci. USA 93, 5352–5356.

    PubMed  CAS  Google Scholar 

  • Mukai, H., Toshimori, M., Shibata, H., Kitagawa, M., Shimakawa, M., Miyahara, M., Sunakawa, H. & Ono, Y. (1996) PKN associates and phosphorylates the head-rod domain of neurofilament protein, J. Biol. Chem. 271, 9816–9822.

    PubMed  CAS  Google Scholar 

  • Mukai, H. & Ono, Y. (1994) A novel protein kinase with leucine zipperlike sequences — its catalytic domain is highly homologous to that of protein kinase C., Biochem. Biophys. Res. Commun. 199, 897–904.

    PubMed  CAS  Google Scholar 

  • Nobes, C. D. & Hall, A. (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell 81, 53–62.

    PubMed  CAS  Google Scholar 

  • Nobes, C. D., Hawkins, P., Stephens, L. & Hall, A. (1995) Activation of the small GTP-binding proteins rho and rac by growth factor receptors, J. Cell Sci. 108, 225–233

    PubMed  CAS  Google Scholar 

  • Noda, M., Yasuda Fukazawa, C., Moriishi, K., Kato, T., Okuda, T., Kurokawa, K. & Takuwa, Y. (1995) Involvement of rho in GTPγS-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity, FEBS Lett. 367, 246–250.

    PubMed  CAS  Google Scholar 

  • Nonaka, H., Tanaka, K., Hirano, H., Fujiwara, T., Kohno, H., Umikawa, M., Mino, A. & Takai, Y. (1995) A downstream target of rho1 small GTP-binding protein is pkc1, a homolog of protein kinase c, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae, EMBO J. 14, 5931–5938.

    PubMed  CAS  Google Scholar 

  • Olson, M. F., Ashworth, A. & Hall, A. (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1, Science 269, 1270–1272.

    PubMed  CAS  Google Scholar 

  • Ottilie, S., Miller, P. J., Johnson, D. I., Creasy, C. L., Sells, M. A., Bagrodia, S., Forsburg, S. L. & Chernoff, J. (1995) Fission yeast PAK1 + encodes a protein-kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating, EMBO J. 14, 5908–5919.

    PubMed  CAS  Google Scholar 

  • Paterson, H. F., Self, A. J., Garrett, M. D., Just, I., Aktories, K. & Hall, A. (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology, J. Cell Biol. 111, 1001–1007.

    PubMed  CAS  Google Scholar 

  • Peppelenbosch, M. P., Qiu, R. G., de Vries Smits, A. M., Tertoolen, L. G., de Laat, S. W., McCormick, F., Hall, A., Symons, M. H. & Bos, J. L. (1995) Rac mediates growth factor-induced arachidonic acid release, Cell 81, 849–856.

    PubMed  CAS  Google Scholar 

  • Polverino, A., Frost, J., Yang, P., Hutchison, M., Neiman, A. M., Cobb, M. H. & Marcus, S. (1995) Activation of mitogen activated protein kinase cascades by p21-activated protein kinases in cell-free extracts of Xenopus oocytes, J. Biol. Chem. 270, 26067–26070.

    PubMed  CAS  Google Scholar 

  • Pombo, C. M., Kehrl, J. H., Sanchez, I., Katz, P., Avruch, J., Zon, L. I., Woodgett, J. R., Force, T. & Kyriakis, J. M. (1995) Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase, Nature 377, 750–754.

    PubMed  CAS  Google Scholar 

  • Prendergast, G. C., Khosravifar, R., Solski, P. A., Kurzawa, H., Lebowitz, P. F. & Der, C. J. (1995) Critical role of Rho in cell transformation by oncogenic Ras, Oncogene 10, 2289–2296.

    PubMed  CAS  Google Scholar 

  • Qiu, R. G., Chen, J., Kirn, D., McCormick, F. & Symons, M. (1995a) An essential role for Rac in Ras transformation, Nature 374, 457–459.

    PubMed  CAS  Google Scholar 

  • Qiu, R. G., Chen, J., McCormick, F. & Symons, M. (1995b) A role for Rho in Ras transformation, Proc. Natl Acad. Sci. USA 92, 11781–11785.

    PubMed  CAS  Google Scholar 

  • Ramer, S. W. & Davis, R. W. (1993) A dominant truncation allele identifies a gene, Ste20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae, Proc. Natl Acad. Sci. USA 90, 452–456.

    PubMed  CAS  Google Scholar 

  • Reid, T., Furayashiki, T., Ishizaki, T., Watanabe, G., Watanabe, N., Fujisawa, K., Morii, N., Madaule, P. & Narumiya, S. (1996) Rhotekin, a new putative target for Rho-bearing homology to a serine/threonine kinase, PKN, and rhophilin in the Rho-binding domain, J. Biol. Chem. 271, 13556–13560.

    PubMed  CAS  Google Scholar 

  • Ren, X. D., Bokoch, G. M., Traynorkaplan, A., Jenkins, G. H., Anderson, R. A. & Schwartz, M. A. (1996) Physical association of the small GTPase Rho with a 68 kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells, Mol. Biol. Cell 7, 435–442.

    PubMed  CAS  Google Scholar 

  • Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. (1992) The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling, Cell 70, 401–410.

    PubMed  CAS  Google Scholar 

  • Ridley, A. J. & Hall, A. (1992) The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell 70, 389–399.

    PubMed  CAS  Google Scholar 

  • Ridley, A. J. & Hall, A. (1994) Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase, EMBO J. 13, 2600–2610.

    PubMed  CAS  Google Scholar 

  • Roberts, R. L. & Fink, G. R. (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type — mating and invasive growth, Genes & Dev. 8, 2974–2985.

    CAS  Google Scholar 

  • Rooney, R. D., Tuazon, P. T., Meek, W. E., Carroll, E. J., Hagen, J. J., Gump, E. L., Monnig, C. A., Lugo, T. & Traugh, J. A. (1996) Cleavage arrest of early frog embryos by the G-protein activated protein kinase PAKI, J. Biol. Chem. 271, 21498–21504.

    PubMed  CAS  Google Scholar 

  • Satoh, T., Kato, J., Nishida, K. & Kaziro, Y. (1996) Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation, FEBS Lett. 386, 230–234.

    PubMed  CAS  Google Scholar 

  • Simon, M. N., De Virgilio, C., Souza, B., Pringle, J. R., Abo, A. & Reed, S. L (1995) Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway, Nature 376, 702–705.

    PubMed  CAS  Google Scholar 

  • Siddiqi, A. R., Smith, J. L., Ross, A. H., Qiu, R.-G., Symons, M. & Exton, J. H. (1995) Regulation of phospholipase D in HL60 cells, J. Biol. Chem. 269, 8466–8473.

    Google Scholar 

  • Symons, M. (1996) Rho-family GTPases — the cytoskeleton and beyond, Trends Biochem. Sci. 21, 178–181.

    PubMed  CAS  Google Scholar 

  • Symons, M., Derry, J. M. J., Karlak, B., Jiang, S., Lemahieu, V., McCormick, F., Francke, U. & Abo, A. (1996) Wiskott-Aldrich syndrome protein, a novel effector for the GTPase Cdc42Hs, is implicated in actin polymerization, Cell 84, 723–734.

    PubMed  CAS  Google Scholar 

  • Takai, Y., Sasaki, T., Tanaka, K. & Nakanishi, H. (1995) Rho as a regulator of the cytoskeleton, Trends Biochem. Sci. 20, 227–231.

    PubMed  CAS  Google Scholar 

  • Teo, M., Manser, E. & Lim, L. (1995) Identification and molecular cloning of a p21Cdc42/Rac1-activated serine/threonine kinase that is rapidly activated by thrombin in platelets, J. Biol. Chem. 270, 26690–26697.

    PubMed  CAS  Google Scholar 

  • Tolias, K. F., Cantley, L. C. & Carpenter, C. L. (1995) Rho family GTPases bind to phosphoinositide kinases, J. Biol. Chem. 270, 17656–17659.

    PubMed  CAS  Google Scholar 

  • Van Aelst, L., Joneson, T. & Bar-Sagi, D. (1996) Identification of a novel Rac1-interacting protein involved in membrane ruffling, EMBO J. 15, 3778–3786.

    PubMed  Google Scholar 

  • Watanabe, G., Saito, Y., Madaule, P., Ishizaki, T., Fujisawa, K., Morii, N., Mukai, H., Ono, Y., Kakizuka, A. & Narumiya, S. (1996) Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho, Science 271, 645–648.

    PubMed  CAS  Google Scholar 

  • Wilson, L., Carrier, M. J. & Kellie, S. (1995) Pp125tak tyrosine kinase-activity is not required for the assembly of F-actin stress fibers and focal adhesions in cultured mouse aortic smooth-muscle cells, J. Cell Sci. 108, 2381–2391.

    PubMed  CAS  Google Scholar 

  • Wittinghofer, A. & Valencia, A. (1995) Three-dimensional structure of Ras and Ras-related proteins, in Guidebook to the small GTPases (Zerial, M. & Huber, L. A., eds) pp. 20–29, Oxford University Press, Oxford.

    Google Scholar 

  • Wu, C., Whiteway, M., Thomas, D. Y. & Leberer, E. (1995) Molecular characterization of Ste20p, a potential mitogen-activated protein or extracellular signal-regulated kinase kinase (MEK) kinase kinase from Saccharomyces cerevisiae, J. Biol. Chem. 270, 15984–15992.

    PubMed  CAS  Google Scholar 

  • Yamamori, B., Kuroda, S., Shimizu, K., Fukui, K., Ohtsuka, T. & Takai, Y. (1995) Purification of a Ras-dependent mitogen activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of B-Raf and 14-3-3 proteins, J. Biol. Chem. 270, 11723–11726.

    PubMed  CAS  Google Scholar 

  • Yarden, O., Plamann, M., Ebbole, D. J. & Yanofsky, C. (1992) Cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase, EMBO J. 11, 2159–2166.

    PubMed  CAS  Google Scholar 

  • Zhang, J., King, W. G., Dillon, S., Hall, A., Feig, L. & Rittenhouse, S. E. (1993) Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho, J. Biol. Chem. 268, 22251–22254.

    PubMed  CAS  Google Scholar 

  • Zhang, S., Han, J., Sells, M. A., Chernoff, J., Knaus, U. G, Ulevitch, R. J. & Bokoch, G. M. (1995) Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pakl, J. Biol. Chem. 270, 23934–23936.

    PubMed  CAS  Google Scholar 

  • Zhao, Z. S., Leung, T., Manser, E. & Lim, L. (1995) Pheromone signalling in Saccharomyces cerevisiae requires the small GTP-binding protein Cdc42p and its activator CDC24, Mol. Cell Biol. 15, 5246–5257.

    PubMed  CAS  Google Scholar 

  • Zheng, Y., Bagrodia, S. & Cenone, R. A. (1994) Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85, J. Biol. Chem. 269, 18727–18730.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 FEBS

About this chapter

Cite this chapter

Lim, L., Manser, E., Leung, T., Hall, C. (1996). Regulation of phosphorylation pathways by p21 GTPases. In: EJB Reviews 1996. EJB Reviews, vol 1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60659-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60659-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62051-8

  • Online ISBN: 978-3-642-60659-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics