Estimate of Atmospheric Dissipation Derived from UARS/HRDI Measurements

  • Valery A. Yudin
  • Marvin A. Geller
  • Boris V. Khattatov
Conference paper
Part of the NATO ASI Series book series (volume 50)


The parameters that appear in gravity wave parameterizations are mostly determined by reasonableness and by being able to derive middle atmosphere mean wind and temperature structures that agree with observations. This puts effective constraints on these parameterizations at middle and high latitudes but does not effectively constrain these parameterizations at low latitudes. The diurnal tide, as derived from UARS HRDI wind observations is used to derive an annual climatology of the implied atmospheric dissipation. This dissipation thus derived is shown to be less than that derived from commonly used gravity wave parameterizations at low latitudes (less than approximately 40 ° latitude). Thus, models using most familiar gravity wave parameterizations will not give structures for the diurnal tide that agree with UARS HRDI observations.


Gravity Wave Zonal Wind Middle Atmosphere Diurnal Tide Lower Thermosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burrage, M. D., W. R. Skinner, A. R. Marshall, P. B. Hays, R. S. Lieberman, S. J. Franke, D. A. Gell, D. A. Ortland, Y. T. Morton, F. J. Schmidlin, R. A. Vincent, and D. I. Wu (1993) Comparisons of HRDI wind measurements with radar and rocket observations. Geophys. Res. Lett., 20, 1,259–1,262.Google Scholar
  2. Burrage, M. D., W. R. Skinner, D. A. Gell, P. B. hays, A. R. Marshall,Google Scholar
  3. D. A. Ortland, A. H. Manson, S. J. Franke, D. C. Fritts, P. Hoffman, C. McLandress, R. Niciejewski, F. J. Schmidlin, G. G. Shepherd, W. Singer, T. Tsuda, and R. A. Vincent (1996) Validation of mesosphere and lower thermosphere winds from the high resolution Doppler imager on UARS. J. Geophys. Res., 101, 10,365–10, 392.Google Scholar
  4. Chapman, S., and R. S. Lindzen (1970) Atmospheric Tides. Reidel, Dordrecht, Netherlands.Google Scholar
  5. Fels, S. B. (1985) Radiative-dynamical interactions in the middle atmosphere. Adv. Geophys., 28A, 277 – 300.CrossRefGoogle Scholar
  6. Forbes, J. M., and R. A. Vincent (1989) Effects of the mean winds and dissipation on the diurnal propagating tide: an analytic approach. Planet. Space. Sci.,37, 197 – 209.Google Scholar
  7. Fritts, D. C., and W. Lu (1993) Spectral estimates of gravity wave energy and momentum fluxes. Part II: Parameterization of wave forcing and variability. J. Atmos. Sci.,50, 3,695–3, 713.Google Scholar
  8. Garcia, R. R., and S. Solomon (1985) The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90, 3,850–3, 868.Google Scholar
  9. Hagan, M. E., J. M. Forbes, and F. Vial (1995) An updated model of migrating tides in the middle atmosphere: Initial results and measurement comparisons. In Proceedings of the workshop on “Wind Observations in the Middle Atmosphere”held in Paris 15/18 November, 1994 (available through CNES Headquarters).Google Scholar
  10. Hays, P. B., D. I. Wu, M. D. Burrage, D. A. Gell, H. J. Grassl, R. S. Lieberman, A. R. Marshall, Y. T. Morton, D. A. Ortland, and W. R. Skinner (1994) Observations of the diurnal tide from space. J. Atmos. Sci.,51, 3,077– 3, 093.Google Scholar
  11. Hines, C. O. (1996a) Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic Formulation. In press, J. Atmos. Terr. Phys. Google Scholar
  12. Hines, C. O. (1996b) Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra and implementation. In press, J. Atmos. Terr. Phys. Google Scholar
  13. Holton, J. R., and W. M. Wehrbein (1980) A numerical model of the zonal mean circulation of the middle atmosphere. Pageoph, 118, 284 – 306.CrossRefGoogle Scholar
  14. Houghton, J. T. (1978) The stratosphere and mesosphere. Q. J. R. Meteorol. Soc.,104, 1 – 29.Google Scholar
  15. Khattatov, B. V., M. A. Geller, V. A. Yudin, P. B. hays, W. R. Skinner, M. D. Burrage, S. J. Franke, D. C. Fritts, J. R. Isler, A. H. Manson,Google Scholar
  16. E. Meek, R. McMurray, W. Singer, P. Hoffmann, and R. A. Vincent (1996a) Dynamics of the mesosphere and lower thermosphere as seen by MF radars and by the high-resolution Doppler imager/UARS. J. Geophys. Res., 101, 10,393–10, 404.Google Scholar
  17. Khattatov, B. V., M. A. Geller, V. A. Yudin, P. B. Hays, and R. A. Vincent (1996b) Meridional diurnal tidal winds derived from the HRDI/UARS observations. Submitted to J. Geophys. Res. Google Scholar
  18. Khattatov, B. V., V. A. Yudin, M. A. Geller, and P. B. Hays (1996c) Global monthly mean climatology of the diurnal tide and dissipation derived from the HRDI/UARS data. Submitted to J. Geophys. Res. Google Scholar
  19. Leovy, C. B. (1964) Simple models of thermally driven mesospheric circulation. J. Atmos. Sci.,21, 327–341. Lindzen, R. S. (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707 – 9714.Google Scholar
  20. Morton, Y. T., R. S. Lieberman, P. B. Hays, D. A. Ortland, A. R. Marshall,Google Scholar
  21. L. Wu, W. R. Skinner, M. D. Burrage, D. A. Gell, and J.-H. Yee (1993) Global mesospheric tidal winds observed by the High Resolution Doppler Imager on board of the Upper Atmosphere Research Satellite. Geophys. Res. Lett., 20, 1, 263–1, 266.Google Scholar
  22. Ortland, D. A., P. B. Hays, W. R. Skinner, V. J. Abreu, J.-H. Yee, M. D. Burrage, A. R. Marshall, and D. A. Gell (1995) A sequential estimation technique for recovering atmospheric data from orbiting satellites. The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory. Geophysical Monograph Series, Vol. 87, edited by R. M. Johnson and T. L. Killeen, AGU, Washington, DC, 329 – 337.Google Scholar
  23. Rodgers, C. D. (1976) Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. and Space Phys., 14, 609 – 624.CrossRefGoogle Scholar
  24. Rodgers. C. D. (1990) Characterization and error analysis of profiles retrieved from remote soundings measurements. J. Geophys. Res., 95, 5587 – 5595. Schoeberl, M. R., and D. F. Strobel (1978) The zonally averaged circulation of the middle atmosphere. J. Atmos. Sci.,35, 577–591.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Valery A. Yudin
    • 1
  • Marvin A. Geller
    • 1
  • Boris V. Khattatov
    • 1
  1. 1.Institute for Terrestrial and Planetary AtmospheresState University of New York at StonyBrookStony BrookUSA

Personalised recommendations