Intraband Transitions

  • Eougenious L. Ivchenko
  • Grigory E. Pikus
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 110)


In quantum-mechanical terms, the cyclotron and electron-spin resonances originate from optical transitions of carriers between the Landau levels and magneticfield-splitted spin sublevels. Measurement of the dependence of the cyclotronresonance frequency on the magnitude and direction of magnetic field provides a direct and reliable way for determining the electron (or hole) effective mass, as well as for studying the nonparabolicity and nonsphericity of an electronic band in a semiconductor. In connection with this, we derive in Sec. 7.1 expressions for the longitudinal and transverse electron mass in a superlattice at the miniband bottom, analyze how the choice of the boundary conditions for the envelopes at the interfaces affects these masses, and discuss the nonparabolicity of the miniband spectrum.


Cyclotron Resonance Landau Level Intersubband Transition Velocity Operator Intraband Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    N.F. Gashimzade, E.L. Ivchenko: Fiz. Tekh. Poluprovodn. 25, 323 (1991) [Sov. Phys. - Semicond. 25, 195 (1991)]Google Scholar
  2. 7.2
    T. Duffield, B. Bhat, M. Koza, F. de Rosa, D.M. Hwang, P. Grable, S.J. Allen Jr.: Phys. Rev. Lett. 56, 2724 (1986)CrossRefGoogle Scholar
  3. 7.3
    B.F. Levine, R.J. Malik, J. Walker, K.K. Choi, C.G. Bethea, D A. Kleinman, J.M. Vandenberg: Appl. Phys. Lett. 50, 273 (1987)CrossRefGoogle Scholar
  4. 7.4
    C. Hermann, C. Weisbuch: In Optical Orientation ed. by F. Meier, B.P. Zak- harchenya (North-Holand, Amsterdam 1984) p.463Google Scholar
  5. 7.5
    M. Dobers, K. von Klitzing, G. Weimann: Solid State Commun. 70, 41 (1989)CrossRefGoogle Scholar
  6. 7.6
    E.L. Ivchenko, A.A. Kiselev: Fiz. Tekh. Poluprovodn. 26, 1471 (1992) [Sov. Phys. - Semicond. 26, 827 (1992)]Google Scholar
  7. 7.7
    B. Lou, S. Sudharsanan, S. Perkowitz: Phys. Rev. B 38, 2212 (1988)CrossRefGoogle Scholar
  8. 7.8
    O.K. Kim, W.G. Spitzer: J. Appl. Phys. 50, 4362 (1979)CrossRefGoogle Scholar

Cyclotron Resonance

  1. Bass F., V.A. Lykakh, A.P. Tetervov: Cyclotron resonance in a semiconductor with superlattice. Fiz. Tekh. Poluprovodn. 14, 2314 (1980) [Sov. Phys. - Semicond. 14, 1372 (1980)]Google Scholar
  2. Bluyssen H., J.C. Maan, P. Wyder, L.L. Chang, L. Esaki: Cyclotron resonance in an InAs-GaSb superlattice. Solid State Commun. 31, 35 (1979)CrossRefGoogle Scholar
  3. Schlesinger Z., S.J. Allen, J.C.M. Hwang, P.M. Platzman, N. Tzoar: Cyclotron resonance in two dimensions. Phys. Rev. B 30, 435 (1984)CrossRefGoogle Scholar
  4. Song S.-H., D.C. Tsui, F.F. Fang: Cyclotron mass of two-dimensional holes in strained Si/Si0.88Ge0.12/Si heterostructures. Solid State Commun. 96, 61 (1995)CrossRefGoogle Scholar
  5. Winkler R., M. Merkler, T. Darnhofer, U. Rössler: Theory for the cyclotron resonance of holes in strained asymmetric Ge-SiGe quantum wells. Phys. Rev. B 53, 10858 (1996)CrossRefGoogle Scholar
  6. Wixforth A., M. Kaloudis, C. Rocke, K. Enslin, M. Sundaram, J.H. English, A.C. Gossard: Dynamic response of parabolically confined electron systems. Semicond. Sci. Technol. 9, 215 (1994)CrossRefGoogle Scholar
  7. Wong S.L., D. Kinder, R.J. Nicholas, T.E. Whall, R. Kubiak: Cyclotron-resonance measurements on p-type strained-layer Si1-xGex/Si heterostructures. Phys. Rev. B 51, 13499(1995)CrossRefGoogle Scholar
  8. Yuh P., K.L. Wang: Intersubband optical absorption in coupled quantum wells under an applied electric field. Phys. Rev. B 38, 8377 (1988)CrossRefGoogle Scholar

Electron Spin Resonance, g-Factor

  1. Chen Y.-F., M. Dobrowolska, J.K. Furdyna:g-factor anisotropy of conduction electrons in InSb. Phys. Rev. B 31, 7989 (1985)CrossRefGoogle Scholar
  2. Dobers M., K. von Klitzing, G. Weimann: Electron-spin resonance in the two-dimensional electron gas of GaAs-AlxGa1-xAs heterostructures. Phys. Rev. B 38, 5453 (1988)CrossRefGoogle Scholar
  3. Gudmundsson V., J.J. Palacios: Spin effects in a confined two-dimensional electron gas: Enhancement of the g-factor, spin-inversion states, and their far-infrared absorption. Phys. Rev. B 52, 11266 (1995)CrossRefGoogle Scholar
  4. Hannak R.M., M. Oestreich, A.P. Heberle, W.W. Rühle, K. Köhler: Electron g factor in quantum wells determined by spin quantum beats. Solid State Commun. 93, 313 (1995)CrossRefGoogle Scholar
  5. Heberle A. P., W.W. Rühle, K. Ploog: Quantum beats of electron Larmor precession in GaAs wells. Phys. Rev. Lett. 72, 3887 (1994)CrossRefGoogle Scholar
  6. Hermann C., C. Weisbuch: Optical detection of conduction electron spin resonance in semiconductors and its application tokp perturbation theory. In Optical Orientation, ed. by F. Meier, B.P. Zakharchenya (North-Holland, Amsterdam 1984) p.463Google Scholar
  7. Lommer F., F. Malcher, U. Rössler: Reduced g-f actor of subband Landau levels in AlGaAs/GaAs heterostructures. Phys. Rev. B 32, 6965 (1985)CrossRefGoogle Scholar
  8. Ogg N.R.: Conduction-bandg factor anisotropy in indium antimonide. Proc. Phys. Soc. 89,431 (1966)CrossRefGoogle Scholar
  9. Smith III T.P., F.F. Fang: g-Factor of electrons in an InAs quantum well. Phys. Rev. B 35,7729(1987)CrossRefGoogle Scholar
  10. Snelling M.J., E. Blackwood, C.J. McDonagh, R.T. Harley: Exciton, heavy-hole and electron g factors in type-I GaAs/AxGa1-xAs quantum wells. Phys. Rev. B 45, 3922 (1992)CrossRefGoogle Scholar
  11. Snelling M.J., G.P. Flinn, A.S. Plaut, R.T. Harley, A.C. Tropper, R. Eccleston, C.C. Phillips: Magnetic g factor of electrons in GaAs/AlxGa1-xAs quantum wells. Phys. Rev. B 44, 11345 (1991)CrossRefGoogle Scholar

Intersubband Transitions and IR Spectroscopy

  1. Ahn D., S.L. Chuang: Intersubband optical absorption in a quantum well with an applied electric field. Phys. Rev. B 38, 4149 (1987)CrossRefGoogle Scholar
  2. Berezhkovskii A.M., R.A. Suris: Absorption of electromagnetic radiation by carriers in semiconductors with a superlattice in the transverse magnetic field. Fiz. Tekh. Poluprovodn. 18, 1224 (1984) [Sov. Phys. - Semicond. 18, 764 (1984)]Google Scholar
  3. Brown L.D.L., M. Jaroc, D.C. Herbert: Large intersubband infrared transitions in GaAs-Ga1-xAlx As superlattices. Phys. Rev. B 40, 1616 (1989)CrossRefGoogle Scholar
  4. Golub L.E., E.L. Ivchenko, R.Ya. Rasulov: Intersubband absorption of light in quantum wells for semiconductors with the complicated band structure. Fiz. Tekh. Poluprovodn. 29, 1093 (1995) [Semiconductors 29, 566 (1995)]Google Scholar
  5. Ikonic Z., V. Milanovic, D. Tjapkin: On the linewidths of intersubband transitions in GaAs-AlxGa1-xAs quantum wells in electric field. Solid State Commun. 72, 835 (1989)CrossRefGoogle Scholar
  6. Kono J., S.T. Lee, M.S. Salib, G.S. Herold, A. Petrou, B.D. McCombe: Optically detected far-infrared resonances in doped GaAs quatum wells. Phys. Rev. B 52, 8654 (1995)CrossRefGoogle Scholar
  7. Levine B.F., K.K. Choi, C.G. Bethea, J. Walker, R.J. Malik: New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices. Appl. Phys. Lett. 50, 1092 (1987)CrossRefGoogle Scholar
  8. Miyatake T., S. Horihata, T. Ezaki, H. Kubo, N. Mori, K. Taniguichi, C. Hamaguchi: GaAs/AlGaAs quantum well infrared photodetectors. Solid State Electron. 37, 1187 (1994)CrossRefGoogle Scholar
  9. Piro O.E.: Anisotropy and infrared response of the GaAs-AlAs superlattice. Phys. Rev. B 36, 3427(1987)CrossRefGoogle Scholar
  10. Sengers A.J., L. Tsang, K.J. Kuhn: Optical properties due to intersubband transitions in n-type quantum wells including the effects of the exchange interaction. Phys. Rev. B 48, 15116(1993)CrossRefGoogle Scholar
  11. Warburton R.J., C. Gauer, A. Wixforth, J.P. Kotthaus, B. Brar, H. Kroemer: Intersubband resonances in InAs/AlSb quantum wells: Selection rules, matrix elements, and the depolarization field. Phys. Rev. B 53, 7903 (1996)CrossRefGoogle Scholar
  12. West L.E., S.J. Eglash: First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 46, 1156 (1985)CrossRefGoogle Scholar
  13. Xu W., Y. Fu, M. Willander, S.C. Shen: Theory of normal-incidence absorption for the intersubband transition in n-type indirect-gap semiconductor quantum wells. Phys. Rev. B 49, 13760(1994)CrossRefGoogle Scholar
  14. Yuh P., K.L. Wang: Intersubband optical absorption in coupled quantum wells under an applied electric field. Phys. Rev. B 38, 8377 (1988)CrossRefGoogle Scholar
  15. Zanier S., J.M. Berroir, Y. Guldner, J.P. Vieren, I. Sagnes, F. Glowacki, Y. Campidelli, P.A. Badoz: Free-carrier and intersubband infrared absorption in p-type Si1-xGex/Si multiple quantum wells. Phys. Rev. B 51, 14311 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Eougenious L. Ivchenko
    • 1
  • Grigory E. Pikus
    • 1
  1. 1.A.F. Ioffe Physico-Technical InstituteSt. PetersburgRussia

Personalised recommendations