Skip to main content

Plant Pathogenic Fungi in Agroecosystems

  • Chapter
Plant Relationships Part B

Part of the book series: The Mycota ((MYCOTA,volume 5B))

  • 519 Accesses

Abstract

Epidemics induced by plant pathogenic fungi have had dramatic impacts on human populations worldwide. The earliest records of epidemics appeared well before 500 b.c., but it was not until the mid-19th century that fungi were recognized as disease-causing agents (Whetzel 1918; Ainsworth 1981). Since that time, a massive amount of information has accumulated to provide insights into the biology of fungi as pathogens and processes of disease development. Despite this knowledge base, pathogenic fungi still limit the production of agronomically important plant species, and disease management still requires tremendous inputs of labor and money.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adee SR, Pfender WF, Hartnett DC (1990) Competition between Pyrenophora tritici-repentis and Septoria nodorum in the wheat leaf as measured by de Wit replacement series. Phytopathology 80:1177–1182

    Article  Google Scholar 

  • Agrios GN (1988) Plant pathology. Academic Press, New York

    Google Scholar 

  • Ainsworth GC (1981) Introduction to the history of plant pathology. Cambridge University Press, Cambridge

    Google Scholar 

  • Antonivics J, Alexander HM (1989) The concept of fitness in plant-fungal pathogen systems. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology, vol 2. Genetics, resistance, and management. McGraw-Hill, New York, pp 185–214

    Google Scholar 

  • Aylor DE, Ferrandino FJ (1990) Initial spread of bean rust close to an inoculated bean leaf. Phytopathology 80: 1469–1476

    Article  Google Scholar 

  • Baker R, Maurer CL, Maurer RA (1967) Ecology of plant pathogens in soil. VII. Mathematical models and inoculum density. Phytopathology 57:662–666

    Google Scholar 

  • Bonde R, Schultz ES (1943) Potato refuse piles as a factor in the dissemination of late blight. Am Potato J 20:112–118

    Article  Google Scholar 

  • Boote KJ, Jones JW, Mishoe JW, Berger RD (1983) Coupling pests to crop growth simulators to predict yield reductions. Phytopathology 73:1581–1587

    Article  Google Scholar 

  • Bourke A (1991) Potato blight in Europe in 1845: the scientific controversy. In: Lucas JA, Shatttock RC, Shaw DS, Cooke LR (eds) Phytophthora. Cambridge University Press, Cambridge, pp 12–24

    Google Scholar 

  • Bourke PMA (1964) Emergence of potato blight, 1843–1846. Nature (Lond) 203:805–808

    Article  Google Scholar 

  • Buchanan TS, Kimmey JW (1938) Initial tests of the distance of spread to and intensity of infection on Pinus monticola by Cronartium ribicola from Ribes lacustre and R. viscosissimus. J Agric Res 56:9–30

    Google Scholar 

  • Burdon JJ (1987) Diseases and plant population biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Burdon JJ (1993) The structure of pathogen populations in natural plant communities. Annu Rev Phytopathol 31:305–323

    Article  Google Scholar 

  • Burdon JJ, Chilvers GA (1975) Epidemiology of damping-off disease (Pythium irreguläre) in relation to density of Lepidium sativum seedlings. Ann Appl Biol 81:135–143

    Article  Google Scholar 

  • Campbell CL, Benson DM (1994) Spatial aspects of the development of root disease epidemics. In: Campbell CL, Benson DM (eds) Epidemiology and management of root diseases. Springer, Berlin Heidelberg New York, pp 195–243

    Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Campbell CL, Jacobi WR, Powell NT, Main CE (1984) Analysis of disease progression and the randomness of occurrence of infected plants during tobacco black shank epidemics. Phytopathology 74:230–235

    Article  Google Scholar 

  • Carefoot GL, Sprott ER (1967) Famine on the wind. Rand McNally, Chicago

    Google Scholar 

  • Chellemi DO, Rohrbach KG, Yost RS, Sonoda RM (1988) Analysis of the spatial pattern of plant pathogens and diseased plants using geostatistics. Phytopathology 78: 221–226

    Article  Google Scholar 

  • Civerolo EL, Narang SK, Ross R, Vick KW, Greczy L (1993) Alternatives to methyl bromide: assessment of research needs and priorities. Proc USDA Worksh on Alternatives to methyl bromide, 29 June-1 July 1993, Arlington, Virginia

    Google Scholar 

  • Craigie JH (1945) Epidemiology of stem rust in Western Canada. Sci Agric 25:285–401

    Google Scholar 

  • Davis JM, Main CE (1986) Applying atmospheric trajectory analysis to problems in epidemiology. Plant Dis 70:490–497

    Article  Google Scholar 

  • de Bary A (1861) Die gegenwärtig herrschende Kartoffelkrankheit, ihre Ursache und ihre Verhütung. Felix, Leipzig

    Google Scholar 

  • de Bary A (1863) Recherches sur le dévéloppement de quelques champignons parasites, etc. Ann Sci Nat 4e Ser Bot 20:1–148

    Google Scholar 

  • Demeke T, Kidane Y, Wuhih E (1979) Ergotism, a report on the epidemic, 1977–1978. Ethiopian Med J 17:107–114

    CAS  Google Scholar 

  • Eastburn DM, Butler EE (1988) Microhabitat characterization of Trichoderma harzianum in natural soil; evaluation of factors affecting distribution. Soil Biol Biochem 20:547–553

    Article  Google Scholar 

  • English JT (1992) Modular demography of Lotus corniculatus infected by Rhizoctonia spp. Phytopathology 82:1104

    Google Scholar 

  • English JT (1993) Architecture of shoots of birdsfoot trefoil infected with Rhizoctonia spp. and Stemphylium loti. Phytopathology 83:1358

    Google Scholar 

  • English JT, Thomas CS, Marois JJ, Gubler WD (1989) Microclimate of grape vine canopies associated with leaf removal and control of Botrytis bunch rot. Phytopathology 79:395–401

    Article  Google Scholar 

  • English JT, Bledsoe AM, Marois JJ (1990) Influence of leaf removal from the fruit cluster zone on the components of evaporative potential within grapevine canopies. Agric Ecosys Environ 31:49–61

    Article  Google Scholar 

  • Ferrandino FJ (1993) Dispersive epidemic waves. I. Focus expansion within a linear planting. Phytopathology 83:795–802

    Article  Google Scholar 

  • Ferris RS (1981) Calculating rhizosphere size. Phytopathology 71:1229–1231

    Google Scholar 

  • Fitter AH (1982) Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species. Plant Cell Environ 5:313–322

    Google Scholar 

  • Fitter AH (1986) The topology and geometry of plant root systems: influence of watering rate on root system topology in Trifolium pratense. Ann Bot 58:91–101

    Google Scholar 

  • Fravel DR, Marois JJ (1986) Edaphic parameters associated with establishment of the biocontrol agent Talaromyces flavus. Phytopathology 76:643–646

    Article  Google Scholar 

  • Fuller JG (1968) The day of St. Anthony’s Fire. Macmillan, New York

    Google Scholar 

  • Gäumann E (1950) Principles of plant infection. Hafner, New York

    Google Scholar 

  • Gilligan CA (1979) Modeling rhizosphere infection. Phytopathology 69:782–784

    Article  Google Scholar 

  • Gilligan CA (1985) Introduction. In: Gilligan CA (ed) Advances in plant pathology, vol 3. Academic Press, New York

    Google Scholar 

  • Gilligan CA (1994) Temporal aspects of the development of root disease epidemics. In: Campbell CL, Benson DM (eds) Epidemiology and management of root diseases. Springer, Berlin Heidelberg New York, pp 148–194

    Google Scholar 

  • Goodwin SB, Cohen BA, Deahl KL, Fry WE (1994) Migration from northern Mexico as the probable cause of recent genetic changes in populations of Phytophthora infestans in the United States and Canada. Phytopathology 84:553–558

    Article  Google Scholar 

  • Gregory PH (1945) The dispersion of air-borne spores. Transact Br Mycol Soc 28:26–72

    Article  Google Scholar 

  • Gregory PH (1968) Interpreting plant disease dispersal gradients. Annu Rev Plant Pathol 6:189–212

    Google Scholar 

  • Griffin GJ, Tomimatsu GS (1983) Root infection pattern, infection efficiency, and infection density-disease incidence relationships of Cylindrocladium crotalariae on peanut in field soil. Can J Plant Pathol 5:81–88

    Article  Google Scholar 

  • Grogan RG, Sall MA, Punja ZK (1980) Concepts for modeling root infection by soilborne fungi. Phytopathology 70:361–363

    Article  Google Scholar 

  • Gubler WD, Marois JJ, Bettiga LF (1987) Control of Botrytis bunch rot of grape with canopy management. Plant Dis 81:599–601

    Article  Google Scholar 

  • Gutierrez AP, DeVay JE (1986) Studies of plant-pathogen-weather interactions: cotton and verticillium wilt. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology, vol 1. Macmillan, New York, pp 205–231

    Google Scholar 

  • Hepting GH (1974) Death of the American chestnut. For Hist 18:60–67

    Google Scholar 

  • Horsfall JG (1972) Genetic vulnerability of major crops. National Academy of Science, Washington, DC

    Google Scholar 

  • Ingold CT (1971) Fungal spores. Their liberation and dispersal. Clarendon Press, Oxford

    Google Scholar 

  • Jarosz AM, Davelos AL (1995) Effects of disease in wild populations and the evolution of pathogen aggressiveness. New Phytol 129:371–387

    Article  Google Scholar 

  • Jeger JF (1985) The spatial component of plant disease epidemics. In: Jeger MJ (ed) Spatial components of plant disease epidemics. Prentice Hall, Englewood Cliffs, pp 1–13

    Google Scholar 

  • Jones LR, Johnson J, Dickson JG (1926) Wisconsin studies on the relation of soil temperature to plant disease. Bull Wisc Agric Exp Stn 71, University of Wisconsin at Madison, Wisconsin, 144 pp

    Google Scholar 

  • Keitt GW, Jones LK (1926) Studies of the epidemiology and control of apple scab. Res Bull Wisc Agric Exp Stn 73, University of Wisconsin at Madison, Wisconsin, 104 pp

    Google Scholar 

  • Kuan TL, Erwin DC (1982) Effect of soil matric potential on Phytophthora root rot of alfalfa. Phytopathology 72:543–548

    Article  Google Scholar 

  • Large EC (1940) The advance of the fungi. Holt, New York

    Google Scholar 

  • Large EC (1945) Field trials of copper fungicides for the control of potato blight. I. Foliage protection and yield. Ann Appl Biol 32:319–329

    Article  CAS  Google Scholar 

  • Large EC (1952) The interpretation of progress curves for potato blight and other plant diseases. Plant Pathol 1:109–117

    Article  Google Scholar 

  • Larkin RP, English JT, Mihail JD (1995) Effects of infection by Pythium spp. on root system morphology of alfalfa seedlings. Phytopathology 85:430–435

    Article  Google Scholar 

  • Larkin RP, English JT, Mihail JD (1996) Relationship of infection by Pythium spp. to root system morphology of alfalfa seedlings in the field. Plant Dis 80:281–285

    Article  Google Scholar 

  • Leonard KJ (1980) A reinterpretation of the mathematical analysis of rhizoplane and rhizosphere effects. Phytopathology 70:695–696

    Article  Google Scholar 

  • Lucas GB (1980) The war against blue mold. Science 210:147–153

    Article  PubMed  CAS  Google Scholar 

  • Madden LV (1986) Statistical analysis and comparison of disease progress curves. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology, vol 1. Population dynamics and management. Macmillan, New York, pp 55–84

    Google Scholar 

  • Madden LV (1989) Dynamic nature of within-field disease and pathogen distributions. In: Jeger MJ (ed) Spatial components of plant disease epidemics. Prentice Hall, Englewood Cliffs, pp 96–126

    Google Scholar 

  • McCartney HA, Fitt BD (1985) Construction of dispersal models. In: Gilligan CA (ed) Advances in plant pathology, vol 3. Academic Press, London

    Google Scholar 

  • Melendez EJ, Ackerman JD (1994) Factors associated with a rust infection (Sphenospora saphena) in an epiphytic orchid (Tolumnia variegata). Am J Bot 81:287–293

    Article  Google Scholar 

  • Mihail JD (1989) Macrophomina phaseolina: spatio-temporal dynamics of inoculum and of disease in a highly susceptible crop. Phytopathology 79:848–855

    Article  Google Scholar 

  • Minogue KP (1989) Diffusion and spatial probability models for disease spread. In: Jeger MJ (ed) Spatial components of plant disease epidemics. Prentice Hall, Englewood Cliffs, pp 127–143

    Google Scholar 

  • Mundt CC, Browning JA (1985) Development of crown rust epidemics in genetically diverse oat populations: effect of genotype unit area. Phytopathology 75:607–610

    Article  Google Scholar 

  • Mundt CC, Leonard KJ (1986) Effect of host genotype unit area on development of focal epidemics of bean rust and common maize rust in mixtures of resistant and susceptible plants. Phytopathology 76:895–900

    Article  Google Scholar 

  • Nelson SC, Campbell CL (1993) Comparative spatial analysis of foliar epidemics on white clover caused by viruses, fungi, and a bacterium. Phytopathology 83:288–301

    Article  Google Scholar 

  • Padmanabhan SY (1973) The great Bengal famine. Annu Rev Phytopathol 11:11–26

    Article  Google Scholar 

  • Pinnschmidt HO, Batchelor WD, Teng PS (1995) Simulation of multiple species pest damage in rice using CERES-rice. Agric Syst 48:193–222

    Article  Google Scholar 

  • Reynolds KM, Madden LV (1988) Analysis of epidemics using spatiotemporal autocorrelation. Phytopathology 78:240–246

    Article  Google Scholar 

  • Ristaino JB, Larkin RP, Campbell CL (1994) Spatial dynamics of disease symptom expression during Phytophthora epidemics in bell pepper. Phytopathology 84: 1015–1024

    Article  Google Scholar 

  • Rouse DI, Baker R (1978) Modeling and quantitative analysis of biological control mechanisms. Phytopathology 68:1297–1302

    Article  CAS  Google Scholar 

  • Schmitthenner AF, Hobe M, Bhat RG (1994) Phytophthora sojae races in Ohio over a 10–year interval. Plant Dis 78:269–276

    Article  Google Scholar 

  • Shaner G (1983) Growth of uredinia of Puccinia recondita in leaves of slow and fast-rusting wheat cultivars. Phytopathology 73:931–935

    Article  Google Scholar 

  • Thal WM, Campbell CL, Madden LV (1984) Sensitivity of Weibull model parameter estimates to variation in simulated disease progression data. Phytopathology 74: 1425–1430

    Article  Google Scholar 

  • Thomas CS, Marois JJ, English JT (1988) The effects of wind speed, temperature, and relative humidity on development of aerial mycelium and conidia of Botrytis cinerea on grape. Phytopathology 78:260–265

    Article  Google Scholar 

  • Van den Bosch F, Frinking HD, Metz JAJ, Zadoks JC (1988) Focus expansion in plant disease III: two experimental examples. Phytopathology 78:919–925

    Article  Google Scholar 

  • Van der Plank JE (1947) A method for estimating the number of random groups of adjacent diseased plants in a homogeneous field. Trans R Soc S Afr 31:269–278

    Article  Google Scholar 

  • Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, New York

    Google Scholar 

  • Whetzel HJ (1918) An outline of the history of phytopathology. WB Saunders, Philadelphia

    Google Scholar 

  • Willigan J (1977) Famine and structural adaptation in mid-nineteenth-century Ireland. PhD Dissertation, University of North Carolina, Chapel Hill

    Google Scholar 

  • Woodham-Smith C (1962) The Great Hunger, Ireland 1845–1849. Harper and Row, New York

    Google Scholar 

  • Zadoks JC, Schein RD (1979) Epidemiology and plant disease management. Oxford University Press, New York

    Google Scholar 

  • Zitko SE, Timmer LW (1994) Competitive parasitic abilities of Phytophthora parasitica and P. palmivora on fibrous roots of Citrus. Phytopathology 84:1000–1004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

English, J.T., Marois, J.J. (1997). Plant Pathogenic Fungi in Agroecosystems. In: Carroll, G.C., Tudzynski, P. (eds) Plant Relationships Part B. The Mycota, vol 5B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60647-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60647-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64491-7

  • Online ISBN: 978-3-642-60647-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics