Skip to main content

Genetics and Molecular Biology of the Fungal Partner in the Ectomycorrhizal Symbiosis Hebeloma cylindrosporum × Pinus pinaster

  • Chapter
Plant Relationships Part B

Part of the book series: The Mycota ((MYCOTA,volume 5B))

Abstract

Mycorrhizal symbiosis exists in all terrestrial ecosystems and plays important functions in both natural and human-altered environments. Angiosperm species are mostly endomycorrhizal, whereas the ectomycorrhizal symbiosis involves only about 3% of all phanerogams but a large number of tree species. Harley and Harley (1987a,b) mentioned that mycorrhizas occur in 75–80% of the vascular plants of the British flora. According to Read (1992), ectomycorrhizal trees are the natural dominants of the boreal and temperate forests and are important also in tropical rainforests. The fungi that form ectomycorrhizas belong to the Ascomycotina (several hundred species) and to the Basidiomycotina (around 5000 known species). Few ectomycorrhizal fungi are Zygomycotina or Imperfect Fungi. Altogether, ectomycorrhizal species represent approximately 10% of the 69000 known fungal species (Hawk-sworth 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barret V, Lemke PA, Dixon RK (1989) Protoplast formation from selected species of ectomycorrhizal fungi. Appl Microbiol Biotechnol 30:381–387

    Google Scholar 

  • Barret V, Dixon RK, Lemke PA (1990) Genetic transformation of a mycorrhizal fungus. Appl Microbiol Biotechnol 33:313–316

    Google Scholar 

  • Bills SN, Richter DL, Podila GK (1995) Genetic transformation of the ectomycorrhizal fungus Paxillus involutus by particle bombardment. Mycol Res 99:557–561

    Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    CAS  Google Scholar 

  • Botton B, Chalot M (1995) Nitrogen assimilation: enzymol-ogy in ectomycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza, structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 325–363

    Google Scholar 

  • Bruchet G (1980) Hebeloma cylindrosporum Romagnesi. Rev For Fr 32:294–295

    Google Scholar 

  • Calleja M, Mousain D, Lecouvreur B, D’Auzac J (1980) Influence de la carence phosphatée sur les activités phosphatases acides de trois champignons mycorhi-ziens: Hebeloma edurum Metrod., Suillus granulatus (Fr. ex L.) O. Kiintze et Pisolithus tinctorius (Pers.) Coker et Couch. Physiol Vég 18:489–504

    CAS  Google Scholar 

  • Carroll GC (1992) Fungal mutualism. In: Carroll GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem. Marcel Dekker, New York, pp 327–354

    Google Scholar 

  • Casselton LA (1978) Dikaryon formation in higher basidi-omycetes. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 3. Edward Arnold, London, pp 275–297

    Google Scholar 

  • Cline ML, France RC, Reid CPP (1987) Intraspecific and interspecific growth variation of ectomycorrhizal fungi at different temperatures. Can J Bot 65:869–875

    Google Scholar 

  • Cove DJ (1976) Chlorate toxicity in Aspergillus nidulans: studies of mutants altered in nitrate assimilation. Mol Gen Genet 146:147–159

    PubMed  CAS  Google Scholar 

  • Debaud J-C, Gay G (1987) In vitro fruiting under controlled conditions of the ectomycorrhizal fungus Hebeloma cylindrosporum associated with Pinus pinaster. New Phytol 105:429–435

    Google Scholar 

  • Debaud J-C, Pepin R, Bruchet G (1981a) Etude des ecto-mycorhizes de Dryas octopetala. Obtention de synthèses mycorhiziennes et de carpophores d’Hebeloma alpinum et H. marginatulum. Can J Bot 59:1014–1020

    Google Scholar 

  • Debaud J-C, Pepin R, Bruchet G (1981b) Ultrastructure des ectomycorhizes synthétiques à Hebeloma alpinum et Hebeloma marginatulum de Dryas octopetala. Can J Bot 59:2160–2166

    Google Scholar 

  • Debaud J-C, Gay G, Bruchet G (1986) Intraspecific variability in an ectomycorrhizal fungus: Hebeloma cylindrosporum. 1- Preliminary studies on in vitro fruiting, spore germination and sexual comportment. In: Giani-nazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. INRA Publ, Paris, pp 581–588

    Google Scholar 

  • Debaud J-C, Gay G, Prevost A, Lei J, Dexheimer J (1988) Ectomycorrhizal ability of genetically different homokaryotic and dikaryotic mycelia of Hebeloma cylindrosporum. New Phytol 108:323–328

    Google Scholar 

  • Debaud J-C, Gay G, Bruchet G (1989) Genetics of the fungal partner as a tool to study and improve the mycorrhizal symbiosis. In: Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocyto-biology IV. INRA Publ, Paris, pp 107–110

    Google Scholar 

  • Debaud J-C, Marmeisse R, Gay G (1995) Intraspecific genetic variation in ectomycorrhizal fungi. In: Hock B, Varma AK (eds) Mycorrhiza: function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 79–113

    Google Scholar 

  • Dell B, Botton B, Martin F, Le Tacon F (1989) Glutamate dehydrogenases in ectomycorrhizas of spruce (Picea excelsa L.) and beech (Fagus sylvatica L.). New Phytol 11:683–692

    Google Scholar 

  • Deransart C, Chaumat E, Cleyet-Marel J-C, Mousain D, Labarere J (1990) Purification assay of phosphatases secreted by Hebeloma cylindrosporum and preparation of polyclonal antibodies. Symbiosis 9:185–194

    CAS  Google Scholar 

  • Doudrick RL, Anderson NA (1989) Incompatibility factors and mating competence of two Lacearia spp. (Agaricales) associated with black spruce in northern Minnesota. Phytopathology 79:694–700

    Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report on non-mycorrhizal plant mutants (myc-) obtained in pea (Pisum sativum L.) and faba bean (Vicia faba L.) Plant Sci 60:215–222

    Google Scholar 

  • Ducamp M, Olivier JM (1989) Comparaison des activités phosphatases acides d’hétérocaryons et d’homocaryons de Suillus granulatus. Agronomie 9:295–304

    Google Scholar 

  • Durand N, Debaud J-C, Casselton LA, Gay G (1992) Isolation and preliminary characterization of 5–fluoroindole-resistant and IAA-overproducer mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnesi. New Phytol 121:545–553

    CAS  Google Scholar 

  • Fries N, Mueller GM (1984) Incompatibility systems, cultural features and species circumscriptions in the ectomycorrhizal genus Lacearia (Agaricales). Mycologia 76:633–642

    Google Scholar 

  • Fries N, Neumann W (1990) Sexual incompatibility in Suillus luteus and S. granulatus. Mycol Res 94:64–70

    Google Scholar 

  • Fries N, Sun YP (1992) The mating system of Suillus bovinus. Mycol Res 96:237–238

    Google Scholar 

  • Garbaye J (1994) Transley review no 76. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Garbaye J, Bowen JD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantles of ectomycorrhizas. New Phytol 112:383–388

    Google Scholar 

  • Garbaye J, Duponnois R (1992) Specificity and function of Mycorrhization Helper Bacteria (MHB) associated with the Pseudotsuga menziesii-Lacearia laccata symbiosis. Symbiosis 14:335–344

    Google Scholar 

  • Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can J Bot 69:180–190

    CAS  Google Scholar 

  • Gay G, Debaud J-C (1987) Genetic study on indole-3–acetic acid production by ectomycorrhizal Hebeloma species: inter- and intraspecific variability in homo- and dikaryotic mycelia. Appl Microbiol Biotechnol 26:141–146

    CAS  Google Scholar 

  • Gay G, Rouillon R, Bernillon J, Favre-Bonvin J (1989) IAA biosynthesis by the ectomycorrhizal fungus Hebeloma hiemale as affetred by different precursors. Can J Bot 67:2235–2239

    CAS  Google Scholar 

  • Gay G, Marmeisse R, Fouillet P, Bouletreau M, Debaud J-C (1993) Genotype/nutrition interactions in the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnesi. New Phytol 123:335–343

    CAS  Google Scholar 

  • Gay G, Normand L, Marmeisse R, Debaud J-C (1994) Auxin overproducer mutants of Hebeloma cylindrosporum Romagnesi have increased mycorrhizal activity. New Phytol 128:645–657

    CAS  Google Scholar 

  • Gea L, Normand L, Vian B, Gay G (1994) Structural aspects of ectomycorrhizae of Pinus pinaster (Ait.)Sol. formed by an IAA-overproducer mutant of the fungus Hebeloma cylindrosporum. New Phytol 128:659–670

    Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1989) Phosphorus metabolism in mycorrhizas. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 227–241

    Google Scholar 

  • Gianinazzi-Pearson V, Smith SE (1993) Physiology of mycorrhizal mycelia. Adv Plant Pathol 9:55–82

    Google Scholar 

  • Giltrap NJ (1982) Hebeloma spp. as mycorrhizal associates of birch. Trans Br Mycol Soc 79:157–160

    Google Scholar 

  • Godbout C, Fortin JA (1990) Cultural control of basidiome formation in Lacearia bicolor with container-grown white pine seedlings. Mycol Res 94:1051–1058

    Google Scholar 

  • Hacskaylo E, Bruchet G (1972) Hebelomas as mycorrhizal fungi. Bull Torrey Bot Club 99:17–20

    Google Scholar 

  • Harley JL, Harley EL (1987a) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102

    Google Scholar 

  • Harley JL, Harley EL (1987b) A check-list of mycorrhiza in the British flora — addenda, errata, an index. New Phytol 107:741–749

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London, 234 pp

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655

    Google Scholar 

  • Hébraud M, Fèvre M (1988) Protoplast production and regeneration from mycorrhizal fungi and their use for isolation of mutants. Can J Microbiol 34:157–161

    Google Scholar 

  • Henrion B, Le Tacon F, Martin F (1992) Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes. New Phytol 122:289–298

    CAS  Google Scholar 

  • Hetrik BAD (1989) Acquisition of phosphorus by VA mycorrhizal fungi and the growth response of their host plants. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 205–226

    Google Scholar 

  • Hilbert J-L, Martin F (1988) Regulation of gene expression in ectomycorrhizas. I: Protein changes and the presence of ectomycorrhiza-specific polypeptides in the Pisolithus-Eucalyptus symbiosis. New Phytol 110:339—346

    Google Scholar 

  • Ho I (1989) Acid phosphatase, alkaline phosphatase and nitrate reductase activity of selected ectomycorrhizal fungi. Can J Bot 67:750–753

    CAS  Google Scholar 

  • Ho I, Trappe JM (1987) Enzymes and growth substances of Rhizopogon species in relation to mycorrhizal host and infrageneric taxonomy. Mycologia 79:553–558

    CAS  Google Scholar 

  • Jansen AE (1982) Lactarius hysginus en Hebeloma cylindrosporum in Nederland. Coolia 25:62–67

    Google Scholar 

  • Kropp BR (1990) Variation in acid phosphatase activity among progeny from controlled crosses in the ectomycorrhizal fungus Lacearia bicolor. Can J Bot 68:864–866

    CAS  Google Scholar 

  • Kropp BR, Fortin JA (1986) Formation and regeneration of protoplasts from the ectomycorrhizal basidiomycete Lacearia bicolor. Can J Bot 64:1224–1226

    Google Scholar 

  • Kropp BR, Fortin JA (1988) The incompatibility system and relative ectomycorrhizal performance of mono-karyons and reconstituted dikaryons of Lacearia bicolor. Can J Bot 66:289–294

    Google Scholar 

  • Kropp BR, McAfee BJ, Fortin JA (1987) Variable loss of ectomycorrhizal ability in monokaryotic and dikaryotic cultrues of Lacearia bicolor. Can J Bot 65:500–504

    Google Scholar 

  • Lamhamedi MS, Fortin JA, Kope HH, Kropp BR (1990) Genetic variation in ectomycorrhiza formation by Pisolithus arhizus on Pinus pinaster and Pinus banksiana. New Phytol 115:689–698

    Google Scholar 

  • Lemke PA, Singh NK, Temann UA (1995) Genetic transformation of ectomycorrhizal fungi. In: Varma A, Hock B (eds) Mycorrhiza, structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 137–156

    Google Scholar 

  • Le Tacon F, Valdenaire JM (1980) La mycorhization contrôlée en pépinière. Premiers résultats obtenus à la pépinière du fonds forestier national de Peyrat-le-Château (Haute Vienne) sur épicéa (Picea excelsa) et pin Douglas (Pseudotsuga douglasii). Rev For Fr 32:281–293

    Google Scholar 

  • Le Tacon F, Jung G, Mugnier J, Michelot P, Mauperin C (1985) Efficiency in a forest nursery of an ectomycorrhizal fungus inoculum produced in a fermenter and entrapped in polymeric gels. Can J Bot 63:1664–1668

    Google Scholar 

  • Lundeberg (1970) Utilization of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Stud For Suec 79:1–95

    Google Scholar 

  • Mac Afee BJ, Fortin JA (1988) Comparative effects of the soil microflora on ectomycorrhizal inoculation of conifer seedlings. New Phytol 108:443–449

    Google Scholar 

  • Marmeisse R, Gay G, Debaud J-C, Casselton LA (1992a) Genetic transformation of the symbiotic basidiomycete fungus Hebeloma cylindrosporum. Curr Genet 22:41–45

    PubMed  CAS  Google Scholar 

  • Marmeisse R, Debaud J-C, Casselton LA (1992b) DNA probes for species and strain identification in the ectomycorrhizal fungus Hebeloma. Mycol Res 96:161–165

    CAS  Google Scholar 

  • Marmeisse R, Gay G, Debaud JC (1995) Genetics of ectomycorrhizal fungi and their transformation. In: Stocchi V, Bonfante P, Nuti M (eds) Biotechnology of ectomy-corrhizae, molecular approaches. Plenum Press, New York, pp 99–114

    Google Scholar 

  • Martin F, Botton B (1993) Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Adv Plant Pathol 9:83–102

    Google Scholar 

  • Martin F, Tagu D (1995) Ectomycorrhizal development: a molecular perspective. In: Varma A, Hock B (eds) Mycorrhiza, structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 29–58

    Google Scholar 

  • Martin F, Canet D, Marchai JP, Larher F (1983) Phosphorus 31 nuclear magnetic resonance study of phosphate metabolism in intact ectomycorrhizal fungi. Plant Soil 71:469–476

    CAS  Google Scholar 

  • Melville LH, Massicotte HB, Peterson RL (1987) Ontogeny of early stages of ectomycorrhizae synthesized between Dryas integrifolia and Hebeloma cylindrosporum. Bot Gaz 148:332–341

    Google Scholar 

  • Melville LH, Massicotte HB, Ackerley CA, Peterson RL (1988) An ultrastructural study of modifications in Dryas integrifolia and Hebeloma cylindrosporum during ectomycorrhiza formation. Bot Gaz 149:408–418

    Google Scholar 

  • Miller SL, Allen EB (1992) Mycorrhizae, nutrient translocation and interaction between plants. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 301–332

    Google Scholar 

  • Meysselle J-P, Gay G, Debaud J-C (1986) Intraspecific variability in an ectomycorrhizal fungus: Hebeloma cylindrosporum. 3- Soluble phosphate utilization by sib-monokaryons and wild dikaryons. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. INRA Publ, Paris, pp 597–604

    Google Scholar 

  • Meysselle J-P, Gay G, Debaud J-C (1991) Intraspecific genetic variation of acid phosphatase activity in monokaryotic and dikaryotic populations of the ectomycorrhizal fungus Hebeloma cylindrosporum. Can J Bot 69:808–813

    CAS  Google Scholar 

  • Mousain D, Bousquet N, Polard C (1988) Comparaison des activités phosphatases d’homobasidiomycètes ectomy-corhiziens en culture in vitro. J Eur Pathol For 18:299–309

    CAS  Google Scholar 

  • Peterson RL, Bradbury SM (1995) Use of plant mutants, intraspecific variants, and non-hosts in studying mycorrhiza formation and function. In: Varma A, Hock B (eds) Mycorrhiza, structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 157–180

    Google Scholar 

  • Plassard C, Mousain D, Salsac L (1984a) Mesure in vitro de l’activité nitrate réductase dans les thalles de Hebeloma cylindrosporum, champignon basidiomycète. Physiol Vég 22:67–74

    CAS  Google Scholar 

  • Plassard C, Mousain D, Salsac L (1984b) Mesure in vitro et in vivo de l’activité nitrite réductase dans les thalles de Hebeloma cylindrosporum, champignon basidiomycète. Physiol Vég 22:147–154

    CAS  Google Scholar 

  • Plassard C, Barry D, Eltrop L, Mousain D (1994) Nitrate uptake in maritime pine (Pinus pinaster) and the ectomycorrhizal fungus Hebeloma cylindrosporum: effect of ectomycorrhizal symbiosis. Can J Bot 72:189–197

    Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Van den Hondel CAMJJ (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    PubMed  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Read DJ (1992) The mycorrhizal fungal community with special reference to nutrient mobilization. In: Carroll GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem. Marcel Dekker, New York, pp 631–652

    Google Scholar 

  • Read DJ (1993) Mycorrhiza in plant communities. Adv Plant Pathol 9:1–26

    Google Scholar 

  • Read DJ, Leake JR, Langdale AR (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 181–204

    Google Scholar 

  • Read DJ, Lewis DH, Fitter AH, Alexander IJ (1992) Myc-orrhizas in ecosystems. CAB International, Oxon

    Google Scholar 

  • Rolin D, Le Tacon F, Larher F (1984) Characterization of the different forms of phosphorus in the mycelium of the ectomycorrhizal fungus Hebeloma cylindrosporum cultiveated in pure culture. New Phytol 98:335–343

    CAS  Google Scholar 

  • Romagnesi H (1965) Etudes sur le genre Hebeloma. Bull Soc Mycol Fr 81:321–344

    Google Scholar 

  • Rouillon R, Gay G, Bernillon J, Favre-Bonvin J, Bruchet G (1986) Analysis by HPLC-mass spectromerty of the indole compounds released by the ectomycorrhizal fungus Hebeloma hiemale in pure culture. Can J Bot 64:1893–1987

    CAS  Google Scholar 

  • Scheromm P, Plassard C, Salsac L (1990a) Regulation of nitrate reductase in the ectomycorrhizal basidiomycete Hebeloma cylindrosporum Romagnesi, cultured on nitrate or ammonium. New Phytol 114:441–447

    CAS  Google Scholar 

  • Scheromm P, Plassard C, Salsac L (1990b) Nitrate assimilation of maritime pine (Pinus pinaster Soland in Ait.) ectomycorrhizal with Hebeloma cylindrosporum Romagnesi. New Phytol 114:93–98

    CAS  Google Scholar 

  • Sen R (1990) Intraspecific variation in two species of Suillus from Scots pine (Pinus sylvestris L.) forests based on somatic incompatibility and isozyme analyses. New Phytol 114:607–616

    CAS  Google Scholar 

  • Simchen G, Jinks JL (1964) The determination of dikaryo-tic growth rate in the basidiomycete Schizophyllum commune: a biometrical analysis. Heredity 19:629–649

    PubMed  CAS  Google Scholar 

  • Simoneau P, Viemont JD, Moreau J-C, Strullu DG (1993) Symbiosis-related polypeptides associated with the early stages of ectomycorrhiza organogenesis in birch (Betula pendula Roth). New Phytol 124:495–504

    CAS  Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38

    CAS  Google Scholar 

  • Tagu D, Python M, Crétin C, Martin F (1993) Cloning symbiosis-related cDNAs from eucalypt ectomycorrhiza by PCR-assisted differential screening. New Phytol 125:339–343

    CAS  Google Scholar 

  • Tomsett AB (1989) The genetics and biochemistry of nitrate assimilation in ascomycete fungi. In: Boddy L, Marchant R, Read D (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 33–57

    Google Scholar 

  • Tomsett AB, Garrett RH (1980) The isolation and characterization of mutants defective in nitrate assimilation in Neurospora crassa. Genetics 95:649–660

    PubMed  CAS  Google Scholar 

  • Trappe JM, Luoma DL (1992) The ties that bind: fungi in ecosystems. In: Carroll GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem. Marcel Dekker, New York, pp 631–652

    Google Scholar 

  • Valjalo J (1979) Etude de la nature et du rôle de l’association ectomycorhizienne chez le châtaignier: cas de l’ Hebeloma cylindrosporum (Romagnesi). In: Delmas J (ed) Mushroom Science X Part I. Centre for Agricultural Publications and Documentation, Wageningen, pp 903–918

    Google Scholar 

  • Wagner F, Gay G, Debaud J-C (1986) Intraspecific variability in an ectomycorrhizal fungus: Hebeloma cylindrosporum. 2.-Ammonium and nitrate utilization by sib-monokaryons and wild dikaryons. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. INRA Publ, Paris, pp 589–596

    Google Scholar 

  • Wagner F, Gay G, Debaud J-C (1988) Genetic variability of glutamate dehydrogenase activity in monokaryotic and dikaryotic mycelia of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Microbiol Biotechnol 66:588–594

    Google Scholar 

  • Wagner F, Gay G, Debaud J-C (1989) Genetic variation of nitrate reductase activity in mono- and dikaryotic populations of the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnesi. New Phytol 113:259–264

    CAS  Google Scholar 

  • Williams S, Verma MM, Jinks JL, Brasier CM (1976) Variation in a natural population of Schizophyllum commune. II Variation within the extreme isolates for growth rate. Heredity 37:365–375

    PubMed  CAS  Google Scholar 

  • Wong KKY, Fortin JA (1990) Root colonization and intraspecific mycobiont variation in ectomycorrhiza. Symbiosis 8:197–231

    Google Scholar 

  • Wong KKY, Piché Y, Montpetit D, Kropp B (1989) Differences in the colonization of Pinus banksiana roots by sib-monokaryotic and dikaryotic strains of ectomycorrhizal Laccaria bicolor. Can J Bot 67:1717–1726

    Google Scholar 

  • Zhu H, Higginbotham KO, Dancik BP (1988) Intraspecific genetic variability of isoenzymes in the ectomycorrhizal fungus Suillus tomentosus. Can J Bot 66:588–594

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Debaud, JC., Marmeisse, R., Gay, G. (1997). Genetics and Molecular Biology of the Fungal Partner in the Ectomycorrhizal Symbiosis Hebeloma cylindrosporum × Pinus pinaster . In: Carroll, G.C., Tudzynski, P. (eds) Plant Relationships Part B. The Mycota, vol 5B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60647-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60647-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64491-7

  • Online ISBN: 978-3-642-60647-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics