Skip to main content

Thromboxane A2 and Other Eicosanoids

  • Chapter
Platelets and Their Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 126))

Abstract

The major product of the metabolism of arachidonic acid in platelets is thromboxane A2 (TXA2) (Hamberg et al. 1975); thus, the main focus of this chapter will be on it. The effects of other eicosanoids that are either synthesized by platelets or impact on platelet function will also be discussed. TXA2 receptors are discussed in greater detail in Chap. 7B. We will provide a brief discussion of alterations in platelet TXA2 receptors in disease states. A comprehensive review of the effects of TXA2 on platelet function was provided by Arita et al. (1989). This review will focus on discoveries made since then.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajayi AAL, Mathur R, Halushka PV (1995) Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation 91:2742–2747

    PubMed  CAS  Google Scholar 

  • Alessandrini P, McRae J, Feman S, Fitzgerald GA (1988) Thromboxane biosynthesis and platelet function in type 1 diabetes mellitus. New Engl J Med 319:208–212

    PubMed  CAS  Google Scholar 

  • Arita H, Nakano T, Hanasaki K (1989) Thromboxane A2: its generation and role in platelet activation. Prog Lipid Res 28:273–301

    PubMed  CAS  Google Scholar 

  • Avdonin PV, Svitina-Vlitini IV, Leytin VL, Tkachuk VA (1985) Interaction of stable prostaglandin endoperoxide analogs U46619 and U44069 with human platelet membranes: coupling of receptors with high-affinity GTPase and adenylate cyclase. Thromb Res 40:101–112

    PubMed  CAS  Google Scholar 

  • Banerjee M, Kang KH, Morrow JD, Roberts LJ, Newman JH (1992) Effects of a novel prostaglandin, 8-epi-PGF2α in rabbit lung in situ. Am J Physiol 263:H660–H663

    PubMed  CAS  Google Scholar 

  • Bartoli F, Lin H-K, Ghomashchi F, Gelb MH, Jain MK, Apitz-Castro R (1994) Tight binding inhibitors of 85-kDa phospholipase A2 but not 14-kDa phospholipase A2 inhibit release of free arachidonate in thrombin-stimulated human platelets. J Biol Chem 269:15625–15630

    PubMed  CAS  Google Scholar 

  • Best L, Jones PBB, Preston FE (1979) Effect of glucose on platelet thromboxane biosynthesis. Lancer II:790

    Google Scholar 

  • Bettazzoli L, Zirrolli JA, Reidhead CT, Shahgholi M, Murphy RC (1990) Incorporation of arachidonic acid into glycerophospholipids of a murine bone marrow derived mast cell. Adv Prostaglandin Thromboxane Leukot Res 20:71–78

    PubMed  CAS  Google Scholar 

  • Bonne C, Martin B, Regnault F (1980) The cyclic AMP-lowering effect of the stable endoperoxide analog U46619 in human platelets. Thromb Res 20:701–704

    PubMed  CAS  Google Scholar 

  • Broekman MJ, Handin RI, Derksen A, Cohen P (1976) Distribution of phospholipids, fatty acids, and platelet factor 3 activity among subcellular fractions of human platelets. Blood 6:963–971

    Google Scholar 

  • Brüne B, von Appen F, Ullrich V (1994) Receptor occupancy regulates Ca2+ entry and intracellular Ca2+ redistribution in activated human platelets. Biochem J 304:993–999

    PubMed  Google Scholar 

  • Butkus A, Skrinska VA, Schumacher OP (1980) Thromboxane production and platelet aggregation in diabetic subjects with clinical complications. Thromb Res 19:211–223

    PubMed  CAS  Google Scholar 

  • Cohen P, Derksen A (1969) Comparison of phospholipid and fatty acid composition of human erythrocytes and platelets. Br J Haematol 17:359–371

    PubMed  CAS  Google Scholar 

  • Collier A, Tymkewycz P, Armstrong R, Young RJ, Jones RL, Clarke BF (1986) Increased platelet thromboxane receptor sensitivity in diabetic patients with proliferative retinopathy. Diabetologia 29:471–474

    PubMed  CAS  Google Scholar 

  • Colwell JA, Halushka PV, Sarji KE, Sagel J (1978) Platelet function in diabetes mellitus. Med Clin North Am 62:753–760

    PubMed  CAS  Google Scholar 

  • D’Angelo DD, Davis MG, Ali S, Dorn GW II (1994) Cloning and pharmacologic characterization of a thromboxane A2 receptor from K562 (human chronic myelogenous leukemia) cells. J Pharmacol Exp Ther 271:1034–1041

    PubMed  Google Scholar 

  • Davi G, Catalano I, Averna M, Notarbartolo A, Strano A, Ciabattoni G, Patrono C (1990) Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med 322:1769–1774

    PubMed  CAS  Google Scholar 

  • Davi G, Averna M, Catalano I, Barbagallo C, Ganci A, Notarbartolo A, Ciabattoni G, Patrono C (1992) Increased thromboxane biosynthesis in type Ha hypercholesterolemia. Circulation 85:1792–1798

    PubMed  CAS  Google Scholar 

  • Davis-Bruno KL, Halushka PV (1994) Molecular pharmacology and therapeutic potential of thromboxane A2 receptor antagonists. Adv Drug Res 25:173–202

    CAS  Google Scholar 

  • Dennis EA (1987) Regulation of eicosanoid production: role of phospholipases and inhibitors. Biotechology 5:1294–1300

    CAS  Google Scholar 

  • Dhanasekaran N, Vara Prasad MVVS, Wadsworth SJ, Dermott JM, van Rossum G (1994) Protein kinase C-dependent and -independent activation of Na+/H+ exchanger by Gα 12 class of G proteins. J Biol Chem 269:11802–11806

    PubMed  CAS  Google Scholar 

  • Di Minno G, Davi G, Margaglione M, Cirillo F, Grandone E, Ciabattoni G, Catalano I, Strisciuglio P, Andria G, Patrono C, Mancini M (1993) Abnormally high thromboxane biosynthesis in homozygous homocystinuria — evidence for platelet involvement and probucol-sensitive mechanism. J Clin Invest 92:1400–1406

    PubMed  Google Scholar 

  • Dorn GW (1989) Distinct platelet thromboxane A2/prostaglandin H2 receptor subtypes. J Clin Invest 84:1883–1891

    PubMed  CAS  Google Scholar 

  • Dorn GW II, Liel N, Trask JL, Mais DE, Assey ME, Halushka PV (1990) Increased platelet thromboxane A2/prostaglandin H2 receptors in patients with acute myocardial infarction. Circulation 81:212–218

    PubMed  Google Scholar 

  • Faili A, Emadi S, Vargaftig BB, Hatmi M (1994) Dissociation between the phospholipases C aud A2 activities in stimulated platelets and their involvement in arachidonic acid liberation. Br J Haematol 88:149–155

    PubMed  CAS  Google Scholar 

  • Ferenchick G, Schwartz D, Ball M, Schwartz K (1992) Androgenic-anabolic steroid abuse and platelet aggregation: a pilot study in weight lifters. Am J Med Sci 303:78–82

    PubMed  CAS  Google Scholar 

  • Fisher M, Zipser R (1985) Increased excretion of immunoreactive thromboxane B2 in cerebral ischemia. Stroke 16:10–13

    PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Fitzgerald GA (1988) Eicosanoids in myocardial ischemia and injury. In: Halushka PV, Mais DE (eds) Advances in eicosanoid research. MTP Press, Norwell, pp 128–158

    Google Scholar 

  • Fitzgerald DJ, Roy L, Catella F, Fitzgerald GA (1986) Platelet activation in unstable coronary disease. N Engl J Med 315:983–988

    PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Mayo G, Catella F, Entman SS, Fitzgerald GA (1987) Increased thromboxane biosynthesis in normal pregnancy is mainly derived from platelets. Am J Obstet Gynecol 157:325–330

    PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Catella F, Roy L, Fitzgerald GA (1988) Marked platelet activation in vivo after intravenous Streptokinase in patients with acute myocardial infarction. Circulation 77:142–150

    PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Rocki W, Murray R, Mayo G, Fitzgerald GA (1990) Thromboxane A2 synthesis in pregnancy-induced hypertension. Lancet I:751–754

    Google Scholar 

  • Fitzgerald GA, Reilly IA, Pedersen AK (1985) The biochemical pharmacology of thromboxane synthase inhibition in man. Circulation 72:1194–1201

    PubMed  CAS  Google Scholar 

  • Foegh ML, Zhao Y, Madren L, Rolnick M, Stair TO, Huang KS, Ramwell PW (1994) Urinary thromboxane A2 metabolites in patients presenting in the emergency room with acute chest pain. J Intern Med 235:153–161

    PubMed  CAS  Google Scholar 

  • Fonlupt P, Croset M, Lagarde M (1991) 12-HETE inhibits the binding of PGH2/TXA2 receptor ligands in human platelets. Thromb Res 63:239–248

    PubMed  CAS  Google Scholar 

  • Foulon I, Bachir D, Galacteros F, Maclouf J (1993) Increased in vivo production of thromboxane in patients with sickle cell disease is accompanied by an impairment of platelet functions to the thromboxane A2 agonist U46619. Arterioscler Thromb 13:421–426

    PubMed  CAS  Google Scholar 

  • Furci L, Fitzgerald, DF, Fitzgerald GA (1991) Heterogeneity of prostaglandin H2/thromboxane A2 receptors: distinct subtypes mediate vascular smooth muscle contraction and platelet aggregation. J Pharmacol Exp Ther 258:74–81

    PubMed  CAS  Google Scholar 

  • Grimm LJ, Knapp DR, Senator D, Halushka PV (1981) Inhibition of platelet thromboxane synthesis by 7-(I-imidazolyl)heptanoic acid; dissociation from inhibition of aggregation. Thromb Res 24:307–317

    PubMed  CAS  Google Scholar 

  • Group, Italian Study of Aspirin in Pregnancy Study (1993) Low-dose aspirin in prevention and treatment of intrauterine growth retardation and pregnancy-induced hypertension. Lancet 341:396–400

    Google Scholar 

  • Habenicht AJR, Salbach P, Goerig M, Zeh W, Janssen-Timmen U, Blattner C, King WC, Glomset JA (1990) The LDL receptor pathway delivers arachidonic acid for eicosanoid formation in cells stimulated by platelet-derived growth factor. Nature 345:634–636

    PubMed  CAS  Google Scholar 

  • Hall JM, Strange PG (1984) Use of a prostacyclin analogue, [3H]iloprost, for studying prostacyclin-binding sites on human platelets and neuronal hybird cells. Biosci Rep 4:491–498

    Google Scholar 

  • Halushka PV, Mais DE (1989) Basic and clinical pharmacology of thromboxane A2. Drugs Today 25:383–393

    CAS  Google Scholar 

  • Halushka PV, Lurie D, Colwell JA (1977) Increased synthesis of prostaglandin-E-like material by platelets from patients with diabetes mellitus. N Engl J Med 297:1306–1310

    PubMed  CAS  Google Scholar 

  • Halushka PV, Mayfield R, Wohltmann HJ, Rogers RC, Goldberg AK, McCoy SA, Loadholt CB, Colwell JA (1981a) Increased platelet arachidonic acid metabolism in diabetes mellitus. Diabetes 30:44–48

    PubMed  CAS  Google Scholar 

  • Halushka PV, Rogers RC, Loadholt CB, Colwell JA (1981b) Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 97:87–96

    PubMed  CAS  Google Scholar 

  • Halushka PV, Mais DE, Saussy DL Jr (1987) Platelet and vascular smooth muscle thromboxane A2/prostaglandin H2 receptors. Fed Proc 46:149–153

    PubMed  CAS  Google Scholar 

  • Halushka PV, Mais DE, Mayeux PR, Morinelli T (1989) Prostaglandin, thromboxane and leukotriene receptors. Annu Rev Pharmacol Toxicol 29:213–239

    PubMed  CAS  Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994–2998

    PubMed  CAS  Google Scholar 

  • Hamid-Bloomfield S, Whittle B (1986) Prostaglandin D2 interacts at thromboxane receptor sites on guinea pig platelets. Br J Pharmacol 88:931–936

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Sasaki H, Togo M, Tsukamoto K, Horie Y, Fukata H, Watanabe T, Kurokawa K (1994) Roles of myosin light-chain kinase in platelet shape change and aggregation. Biochim Biophys Acta 1223:163–169

    PubMed  CAS  Google Scholar 

  • Heptinstall S, Bevan J, Cockbill SR, Hanley SP, Parry MJ (1980) Effects of a selective inhibitor of thromboxane synthetase on human blood platelet behaviour. Thromb Res 20:219–230

    PubMed  CAS  Google Scholar 

  • Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S (1991) Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349:617–620

    PubMed  CAS  Google Scholar 

  • Investigators RVAPT (1994) Randomized trial of ridogrel, a combined thromboxane A2 synthase inhibitor and thromboxane A2/prostaglandin endoperoxide receptor antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction. Circulation 89:588–595

    Google Scholar 

  • Jaschonek K, Faul C, Weisenberger H, Krönert K, Schröder H, Renn W (1989) Platelet thromboxane A2/endoperoxide (TXA2/PGH2) receptors in type I diabetes mellitus. Thromb Haemost 61:535–536

    PubMed  CAS  Google Scholar 

  • Johnson GJ, Leis LA, Dunlop PC (1993) Thromboxane-insensitive dog platelets have impaired activation of phopholipase C due to receptor-linked G protein dysfunction. J Clin Invest 92:2469–2479

    PubMed  CAS  Google Scholar 

  • Kambayashi J, Kawasaki T, Tsujinaka T, Sakon M, Oshiro T, Mori T (1987) Active metabolism of phosphatidylethanolamine plasmaloogen in stimulated platelets, analyzed by high performance liquid chromatography. Biochem Int 14:241–247

    PubMed  CAS  Google Scholar 

  • Katayama S, Inaba M, Maruno Y, Omoto A, Kawazu S, Ishll J (1987) Increased thromboxane B2 excretion in diabetes mellitus. J Lab Clin Med 109:711–717

    PubMed  CAS  Google Scholar 

  • Keith JJC, Spitz B, Van Assche FA (1993) Thromboxane synthetase inhibition as a new therapy for preeclampsia: animal and human studies minireview. Prostaglandins 45:3–13

    PubMed  CAS  Google Scholar 

  • Kerins DM, Murray R, Fitzgerald GA (1991) Prostacyclin and prostaglandin E1: molecular mechanisms and therapeutic utility. Prog Hemost Thromb 10:307–337

    PubMed  CAS  Google Scholar 

  • Kim DK, Bonventre JV (1993) Purification of a 100 kDa phospholipase A2 from spleen, lung, and kidney: antiserum raised to pig spleen phospholipase A2 recognizes a similar form in bovine lung, kidney, and platelets, and immunoprecipitates phospholipase A2 activity. Biochem J 294:261–270

    PubMed  CAS  Google Scholar 

  • Knapp HR, Reilly IAG, Alessandrini P, Fitzgerald GA (1986) In vivo indexes of platelet and vascular function during fish-oil administration in patients with atherosclerosis. New Engl J Med 314:937–942

    PubMed  CAS  Google Scholar 

  • Knezevic I, Borg C, Le Breton GC (1993) Identification of Gq as one of the G-proteins which copurify with human platelet thormboxane A2/prostaglandin H2 receptors. J Biol Chem 268:26011–26017

    PubMed  CAS  Google Scholar 

  • Kramer RM, Deykin D (1983) Arachidonoyl transacylase in human platelets. J Biol Chem 258:13806–13811

    PubMed  CAS  Google Scholar 

  • Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepinsky RB (1989) Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem 264:5768–5775

    PubMed  CAS  Google Scholar 

  • Kramer RM, Roberts EF, Manetta JV, Hyslop PA, Jakubowski JA (1993) Thrombin-induced phosphorylation and activation of Ca+2-sensitive cytosolic phospholipase A2 in human platelets. J Biol Chem 268:26796–26804

    PubMed  CAS  Google Scholar 

  • Lagarde M, Guichardant M, Menashi S, Crawford N (1982) The phospholipid and fatty acid composition of human platelet surface and intracellular membranes isolated by high voltage free flow electrophoresis. J Biol Chem 257:3100–3104

    PubMed  CAS  Google Scholar 

  • Laposata M, Reich EL, Majerus PW (1985) Arachidonoyl-CoA synthetase. J Biol Chem 260:11016–11020

    PubMed  CAS  Google Scholar 

  • Liel N, Mais DE, Halushka PV (1988) Desensitization of the platelet thromboxane A2/prostaglandin H2 receptors by the mimetic U46619. J Pharmacol Exp Ther 247:1133–1138

    PubMed  CAS  Google Scholar 

  • Liel N, Nathan I, Yermiyahu T, Zolotov Z, Lieberman JR, Dvilanski A, Halushka PV (1993) Increased platelet thromboxane A2/prostaglandin H2 receptors in patients with pregnancy induced hypertension. Thromb Res 70:205–210

    PubMed  CAS  Google Scholar 

  • MacIntyre DE, Bushfield M, Gibson I, Hopple S, MacMillan L, McNicol A, Rossi AG (1987) Human platelet receptors and receptor mechanisms for stimulatory and inhibitory lipid mediators. Colloque Inserm 0:321–334

    CAS  Google Scholar 

  • Maeda H, Taniguchi T, Inazu T, Yang C, Nakagawara G, Yamamura H (1993) Proteintyrosine kinase p72syk is activated by thromboxane A2 mimetic U44069 in platelets. Biochem Biophys Res Commun 197:62–67

    PubMed  CAS  Google Scholar 

  • Mais DE, Buren RM, Saussy DL Jr, Kochel PJ, Halushka PV (1985) Binding of a thromboxane A2/prostaglandin H2 receptor antagonist to washed human platelets. J Pharmacol Exp Ther 235:729–734

    PubMed  CAS  Google Scholar 

  • Matsuda K, Mathur RS, Duzic E, Halushka PV (1994a) Androgen regulation of thromboxane A2/prostaglandin H2 receptor expression in human erythroleukemia cells. Am J Physiol 265:E928–E934

    Google Scholar 

  • Matsuda K, Ruff A, Morinelli TA, Mathur RS, Halushka PV (1994b) Testosterone increases thromboxane A2 receptor density in rat aortas and platelets. Am J Physiol 267:H887–H893

    PubMed  CAS  Google Scholar 

  • Mayeux PR, Mais DE, Halushka PV (1991) Interactions of dihydropyridine Ca2+ channel agonists with the human platelet thromboxane A2/prostaglandin H2 receptor. Eur J Pharmacol 206:15–21

    PubMed  CAS  Google Scholar 

  • Mayfield RK, Halushka PV, Wohltmann HJ (1985) Platelet function during continuous insulin infusion treatment in insulin-dependent diabetic patients. Diabetes 34:1127–1133

    PubMed  CAS  Google Scholar 

  • McNicol A (1993) The effects of genistein on platelet function are due to thromboxane receptor antagonism rather than inhibition of tyrosine kinase. Prostaglandins Leukot Essent Fatty Acids 48:379–384

    PubMed  CAS  Google Scholar 

  • McNicol A, Robertson C, Gerrard JM (1993) Vanadate activates platelets by enhancing arachidonic acid release. Blood 81:2329–2338

    PubMed  CAS  Google Scholar 

  • Mead JF, Willis AL (1987) The essential fatty acids: their derivation and role. In: Willis AL (ed) CRC Handbook of eicosanoids: prostaglandins and related lipids, vol 1A. CRC, Boca Raton, pp 85–99

    Google Scholar 

  • Mehta J, Mehta P, Conti CR (1980) Platelet function studies in coronary heart disease. IX. Increased platelet prostaglandin generation and abnormal platelet sensitivity to prostacyclin and endoperoxide analog in angina pectoris. Am J Cardiol 46:943–947

    PubMed  CAS  Google Scholar 

  • Mills D, MacFarlane DE (1977) Prostaglandins and platelet adenylate cyclase. Spectrum, New York, pp 219–233

    Google Scholar 

  • Minuz P, Covi G, Paluani F, Degan M, Lechi C, Corsato M, Lechi A (1988) Altered excretion of prostaglandin and thromboxane metabolites in pregnancy-induced hypertension. Hypertension 11:550–556

    PubMed  CAS  Google Scholar 

  • Modesti PA, Abbate R, Gensini GF, Colella A, Serneri GGN (1991) Platelet thromboxane A2 receptors in type I diabetes. Clin Sci (Colch) 80:101–105

    CAS  Google Scholar 

  • Modesti PA, Colella A, Cecioni I, Costoli A, Biagini D, Migliorini A, Serneri GGN (1995) Increased number of thromboxane A2-prostaglandin H2 platelet receptors in active unstable angina and causative role of enhanced thrombin formation. Am Heart J 129:873–879

    PubMed  CAS  Google Scholar 

  • Moneada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 30:293–331

    Google Scholar 

  • Morinelli TA, Halushka PV (1991) Thromboxane A2/prostaglandin H2 receptors. Trends Cardiovasc Med 1:157–161

    PubMed  CAS  Google Scholar 

  • Morinelli TA, Oatis JE, Okwu AK, Mais DE, Mayeux PR, Masuda A, Knapp DR, Halushka PV (1989) Characterization of an [125I]-labelled thromboxane A2/prostaglandin H2 receptor agonist. J Pharmacol Exp Ther 251:557–562

    PubMed  CAS  Google Scholar 

  • Morinelli TA, Tempel GE, Jaffa AA, Silva RH, Naka M, Folger W, Halushka PV (1993) Thromboxane A2/prostaglandin H2 receptors in streptozotocin-induced diabetes: effects of insulin therapy in the rat. Prostaglandins 45:427–438

    PubMed  CAS  Google Scholar 

  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ (1990) A series of prostaglandin F2α are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87:9383–9387

    PubMed  CAS  Google Scholar 

  • Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ (1992a) Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA 89:10721–10725

    PubMed  CAS  Google Scholar 

  • Morrow JD, Minton TA, Roberts LJ (1992b) The F2-isoprostane, 8-epi-prostaglandin F2α , a potent agonist of the vascular thromboxane/endoperoxide receptor, is a platelet thromboxane/endoperoxide receptor antagonist. Prostaglandins 44:155–163

    PubMed  CAS  Google Scholar 

  • Morrow JD, Minton TA, Badr KF, Roberts ILJ (1994) Evidence that the F2-isoprostane, 8-epi-prostaglandin F2α , is formed in vivo. Biochim Biophys Acta 1210:244–248

    PubMed  CAS  Google Scholar 

  • Mounier C, Vargaftig BB, Franken PA, Verheij HM, Bon C, Touqui L (1994) Platelet secretory phospholipase A2 fails to induce rabbit platelet activation and to release arachidonic acid in contrast with venom phospholipases A2. Biochim Biophys Acta 1214:88–96

    PubMed  CAS  Google Scholar 

  • Mueller RL, Scheidt S (1994) History of drugs for thrombotic disease — discovery, development, and directions for the future. Circulation 89:432–449

    PubMed  CAS  Google Scholar 

  • Murray R, Fitzgerald GA (1989) Regulation of thromboxane receptor activation in human platelets. Proc Natl Acad Sci USA 86:124–128

    PubMed  CAS  Google Scholar 

  • Nakagawa O, Tanaka I, Usui T, Harada M, Sasaki Y, Itoh H, Yoshimasa T, Namba T, Narumiya S, Nakao K (1994) Molecular cloning of human prostacyclin receptor cDNA and its gene expression in the cardiovascular system. Circulation 90:1643–1647

    PubMed  CAS  Google Scholar 

  • Nakahata N, Miyamoto A, Ohkubo S, Ishimoto H, Sakai K, Nakanishi H, Oshika H, Ohizumi Y (1995) Gq/11 communicates with thromboxane A2 receptors in human astrocytoma cells, rabbit astrocytes and human platelets. Res Commun Mol Pathol Pharmacol 87:243–251

    PubMed  CAS  Google Scholar 

  • Nakashima S, Koike T, Nozawa Y (1990) Genistein, a protein tyrosine kinase inhibitor, inhibits thromboxane A2-mediated human platelet responses. Mol Pharmacol 39:475–480

    Google Scholar 

  • Namba T, Sugimoto Y, Hirata M, Hayashi Y, Honda A, Watabe A, Negishi M, Ichikawa A, Narumiya S (1992) Mouse thromboxane A2 receptor: cDNA, cloning, expression and Northern blot analysis. Biochem Biophys Res Commun 184:1197–1203

    PubMed  CAS  Google Scholar 

  • Offermanns S, Laugwitz KL, Spicher K, Schultz G (1994) G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 91:504–508

    PubMed  CAS  Google Scholar 

  • Okwu AK, Ullian ME, Halushka PV (1992) Homologous desensitization of human platelet thromboxane A2/prostaglandin H2 receptors. J Pharmacol Exp Ther 262:238–245

    PubMed  CAS  Google Scholar 

  • Parent CA, Lagarde M, Venton DL, Le Breton GC (1992) Selective modulation of the human platelet thromboxane A2/prostaglandin H2 receptor by eicosapentaenoic and docosahexaenoic acids in intact platelets and solubilized platelet membranes. J Biol Chem 267:6541–6547

    PubMed  CAS  Google Scholar 

  • Patrono C (1994) Aspirin as an antiplatelet drug. New Engl J Med 330:1287–1294

    PubMed  CAS  Google Scholar 

  • Peplow PV (1992) Modification to dietary intake of sodium, potassium, calcium, magnesium and trace elements can influence arachidonic acid metabolism and eicosanoid production. Prostaglandins Leukot Essent Fatty Acids 45:1–19

    PubMed  CAS  Google Scholar 

  • Perret B, Chap HJ, Douste-Blazy L (1979) Asymmetric distribution of arachidonic acid in the plasma membrane of human platelets. A determination using purified phospholipases and a rapid method for membrane isolation. Biochim Biophys Acta 556:434–446

    PubMed  CAS  Google Scholar 

  • Pratico D, Lawson JA, Fitzgerald GA (1994) Cyclooxygenase-dependent formation of the isoprostane 8-epi-prostaglandin F2 alpha. Ann N Y Acad Sci 744:139–145

    PubMed  CAS  Google Scholar 

  • Pulcinelli FM, Pignatelli P, Riondino S, Parisi S, Castiglioni C, Gazzaniga PP (1994) Effect of picotamide on the calcium mobilization and phospholipase C activation in human platelets. Thromb Res 74:453–461

    PubMed  CAS  Google Scholar 

  • Ragazzi E, Chinellato A, Lille Ãœ, Lopp M, Doni MG, Fassina G (1995) Pharmacological properties of MM-706, a new prostacyclin derivative. Gen Pharmacol 26:703–709

    PubMed  CAS  Google Scholar 

  • Rasmanis G, Vesterqvist O, Green K, Henriksson P (1995) Implications of the prognostic importance of exercise-induced thromboxane formation in survivors of an acute myocardial infarction. Prostaglandins 49:247–253

    PubMed  CAS  Google Scholar 

  • Raychowdhury MK, Yukawa M, Collins LJ, McGrail SH, Kent KC, Ware JA (1994) Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem 269:19256–19261

    PubMed  CAS  Google Scholar 

  • Reilly M, Fitzgerald GA (1993) Cellular activation by thromboxane A2 and other eicosanoids. Eur Heart J 14:88–93

    PubMed  CAS  Google Scholar 

  • Riendeau D, Guay J, Weech PK, Laliberte F, Yergey J, Li C, Desmarais S, Perrier H, Liu S, Nicoll-Griffith D, Street IP (1994) Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-kDa phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets. J Biol Chem 269:15619–15624

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S, Russel FA, Deykin D (1977) Mobilization of arachidonic acid in human platelets kinetics and Ca+2 dependency. Biochim Biophys Acta 488:370–380

    PubMed  CAS  Google Scholar 

  • Rockhold RW (1993) Cardiovascular toxicity of anabolic steroids. Am Rev Pharmacol Toxicol 33:497–520

    CAS  Google Scholar 

  • Romero R, Duffy TP (1980) Platelet disorders in pregnancy. Clin Perinatol 7:327–348

    PubMed  CAS  Google Scholar 

  • Rucker W, Schrör K (1983) Evidence for high affinity prostacyclin binding sites in vascular tissue: radioligand studies with a chemically stable analogue. Biochem Pharmacol 32:2405–2410

    PubMed  CAS  Google Scholar 

  • Sagel J, Colwell JA, Crook L, Laimins M (1975) Increased platelet aggregation in early diabetes mellitus. Ann Intern Med 82:733–738

    PubMed  CAS  Google Scholar 

  • Schafer AI, Cooper B, O’Hara D, Handin RI (1979) Identification of platelet receptors for prostaglandin I2 and D2. J Biol Chem 254:2914–2917

    PubMed  CAS  Google Scholar 

  • Scheurlen M, Kirchner M, Clemens MR, Jaschonek K (1993) Fish oil preparations rich in docosahexaenoic acid modify platelet responsiveness to prostaglandin-endoperoxide/thromboxane A2 receptor agonists. Biochem Pharmacol 46:245–249

    PubMed  CAS  Google Scholar 

  • Schiff E, Peleg E, Goldenberg M, Rosenthal T, Ruppin E, Tamarkin M, Barkai G, Ben-Baruch G, Yahal I, Blankstein J, Goldman B, Mashiach S (1989) The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A2 to prostacyclin in relatively high risk pregnancies. N Engl J Med 321:351–356

    PubMed  CAS  Google Scholar 

  • Schoenwaelder SM, Jackson SP, Yuan Y, Teasdale MS, Salem HH, Mitchell CA (1994) Tyrosine kinases regulate the cytoskeletal attachment of integrin alpha IIb beta 3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin polymers. J Biol Chem 269:32479–32487

    PubMed  CAS  Google Scholar 

  • Sekiya F, Takagi J, Usui T, Kawajiri K, Kobayashi Y, Sato F, Saito Y (1991) 125-Hydroxyeicosatetraenoic acid plays a central role in the regulation of platelet activation. Biochem Biophys Res Commun 179:345–351

    PubMed  CAS  Google Scholar 

  • Shattil SJ, Brass LF (1987) Induction of the fibrinogen receptor on human platelets by intracellular mediators. J Biol Chem 262:992–1000

    PubMed  CAS  Google Scholar 

  • Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH, Brugge JS (1994) Tyrosine phosphorylation of pp 125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem 269:14738–14745

    PubMed  CAS  Google Scholar 

  • Shenker A, Goldsmith P, Unson CG, Spiegel AM (1991) The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biol Chem 266:9309–9313

    PubMed  CAS  Google Scholar 

  • Siegl AM (1982) Receptors for PGI2 and PGD2 on human platelets. Methods Enzymol 86:179–193

    PubMed  CAS  Google Scholar 

  • Siegl AM, Smith JB, Silver MJ (1979a) Selective binding site for [3H]-prostacyclin on platelets. J Clin Invest 63:215–220

    PubMed  CAS  Google Scholar 

  • Siegl AM, Smith JB, Silver MJ (1979b) Specific binding sites for prostaglandin D2 on human platelets. Biochem Biophys Res Commun 90:291–296

    PubMed  CAS  Google Scholar 

  • Siffert W, Gengenbach S, Scheid P (1986) Inhibition of platelet aggregation by amiloride. Thromb Res 44:235–240

    PubMed  CAS  Google Scholar 

  • Siffert W, Siffert G, Scheid P, Akkerman JWN (1990) Na+/H+ exchange modulates Ca2+ mobilization in human platelets stimulated by ADP and the thromboxane mimetic U 46619. J Biol Chem 264:719–725

    Google Scholar 

  • Smith JB, Sedar AW, Ingerman CM, Silver MJ (1977) Prostaglandin endoperoxides: platelet shape change, aggregation and the release reaction. Academic, New York, pp 83–95

    Google Scholar 

  • Smith WL, Marnett LJ, De Witt DL (1991) Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 49:153–179

    PubMed  CAS  Google Scholar 

  • Stuart MJ, Gerrard JM, White JG (1980) Effect of cholesterol on production of thromboxane B2 by platelets in vitro. N Engl J Med 302:6–10

    PubMed  CAS  Google Scholar 

  • Stubbs TM, Lazarchick J, Van Dorsten JP, Cox J, Loadholt CB (1986) Evidence of accelerated platelet production and consumption in nonthrombocytopenic preeclampsia. Am J Obstet Gynecol 155:263–265

    PubMed  CAS  Google Scholar 

  • Takabashi K, Nammour TM, Fukunaga M, Ebert J, Morrow JD, Robert LJ, Hoover RL, Badr KF (1992) Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 α, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 90:136–141

    Google Scholar 

  • Takamura H, Narita H, Park HJ, Tanaka K, Matsuura T, Kito M (1987) Differential hydrolysis of phospholipid molecular species during activation of human platelets with thrombin and collagen. J Biol Chem 262:2262–2269

    PubMed  CAS  Google Scholar 

  • Takano S (1994) Staurosporine inhibits STA2-induced platelet aggegation by inhibition of myosin light chain phosphorylation in rabbit washed platelets. Ann N Y Acad Sci 714:315–317

    PubMed  CAS  Google Scholar 

  • Takayama K, Kudo I, Kim DK, Nagata K, Nozawa Y, Inoue K (1991) Purification and characterization of human platelet phospholipase A2 which preferentially hydrolyzes an arachidonoyl residue. FEBS Lett 282:326–330

    PubMed  CAS  Google Scholar 

  • Tremoli E, Folco G, Agradi E, Galli C (1979) Platelet thromboxanes and serumcholesterol. Lancet 1:107–108

    PubMed  CAS  Google Scholar 

  • Trip MD, Cats VM, van Capelle FJL, Vreeken J (1990) Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 322:1549–1554

    PubMed  CAS  Google Scholar 

  • Turini ME, Holub BJ (1994) The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TXA2/PGH2 receptor in U46619-stimulated human platelets. Biochim Biophys Acta 1213:21–26

    PubMed  CAS  Google Scholar 

  • Turini ME, Gaudette DC, Holub BJ, Kirkland JB (1993) Correlation between platelet aggregation and dephosphorylation of a 68 k Da protein revealed through the use of putative PKC inhibitors. Thromb Haemost 70:648–653

    PubMed  CAS  Google Scholar 

  • Ushikubi F, Nakamura K, Narumiya S (1994) Functional reconstitution of platelet thromboxane A2 receptors with Gq and Gi2 in phospholipid vesicles. Mol Pharmacol 46:808–816

    PubMed  CAS  Google Scholar 

  • Van Assche FA, Spitz B, Vermylen J, Deckmijn H (1984) Preliminary observations on treatment of pregnancy-induced hypertension with a thromboxane synthetase inhibitor. Am J Obstet Gynecol 148:216–218

    PubMed  Google Scholar 

  • Vane JR, Botting RM (1995) Pharmacodynamic profile of prostacyclin. Am J Cardiol 75:3A–10A

    PubMed  CAS  Google Scholar 

  • Vassaux G, Far DF, Gaillard D, Ailhaud G, Negrel R (1993) Inhibition of prostacyclin-induced Ca2+ mobilization by phorbol esters in Obl771 preadipocytes. Prostaglandins 46:441–451

    PubMed  CAS  Google Scholar 

  • Voyno-Yasenetskaya T, Conklin BR, Gilbert RL, Hooley R, Bourne HR, Barber DL (1994) Gα13 Stimulates Na-H exchange. J Biol Chem 269:4721–4724

    PubMed  CAS  Google Scholar 

  • Wallenburg HCS, Dekker GA, Makovitz JW, Rotmans P (1986) Low-dose aspirin prevents pregnancy-induced hypertension and pre-eclampsia in angiotensin-sensitive Primigravidae. Lancet 1:1–3

    PubMed  CAS  Google Scholar 

  • Whittle BR, Moncada S, Vane JR (1978) Comparison of the effects of prostacyclin (PGI2), prostaglandin E1 and D2 on platelet aggregation in different species. Prostaglandins 16:373–388

    PubMed  CAS  Google Scholar 

  • Whittle BR, Hamid S, Lidbury P, Rosam AC (1985) Specificity between the antiaggregatory actions of prostacylin, prostaglandin E1 and D2 on platelets. Adv Exp Med Biol 192:109–125

    PubMed  CAS  Google Scholar 

  • Willis AL (1987) The eicosanoids: an introduction and overview. In: Willis AL (ed) CRC Handbook of eicosanoids: prostaglandins and related lipids, vol 1A. CRC, Boca Raton, pp 3–46

    Google Scholar 

  • Wilson DB, Prescott SM, Majerus PW (1982) Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem 257:3510–3515

    PubMed  CAS  Google Scholar 

  • Winocour PD (1994) Platelet turnover in advanced diabetes. Eur J Clin Invest 24:34–37

    PubMed  Google Scholar 

  • Yin K, Halushka PV, Yan Y-T, Wong PY-K (1994) Antiaggregatory activity of 8-epiprostaglandin F2α and other F-series prostanoids and their binding to thromboxane A2/prostaglandin H2 receptors in human platelets. J Pharmcol Exp Ther 270:1192–1196

    CAS  Google Scholar 

  • Ylikorkala O, Pekonen F, Viinikka L (1986) Renal prostacyclin and thromboxane in normotensive and preeclamptic pregnant women and their infants. J Clin Endocrinol Metab 63:1307–1312

    PubMed  CAS  Google Scholar 

  • Yokoyama K, Kudo I, Nakamura H, Inoue K (1994) A possible role for extracellular bicarbonate in U-46619-induced rat platelet aggregation. Thromb Res 74:369–376

    PubMed  CAS  Google Scholar 

  • Zahradnik HP, Schäfer W, Wetzka B, Breckwoldt M (1991) Hypertensive disorders in pregnancy — the role of eicosanoids. Eicosanoids 4:123–136

    PubMed  CAS  Google Scholar 

  • Ziboh VA, Maruta H, Lord J, Cagle WD, Lucky W (1979) Increased biosynthesis of thromboxane A2 by diabetic platelets. Eur J Clin Invest 9:223–228

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halushka, P.V., Pawate, S., Martin, M.L. (1997). Thromboxane A2 and Other Eicosanoids. In: von Bruchhausen, F., Walter, U. (eds) Platelets and Their Factors. Handbook of Experimental Pharmacology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60639-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60639-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64488-7

  • Online ISBN: 978-3-642-60639-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics