δ18o and Trace Element Measurements as Proxy for the Reconstruction of Climate Changes at Lake Van (Turkey): Preliminary Results

  • Gerry Lemcke
  • Michael Sturm
Part of the NATO ASI Series book series (volume 49)

Abstract

The sediments of Lake Van, the fourth largest terminal lake on earth, located at the eastern end of the Taurus Mountain Range show an undisturbed continuous record of chemically precipitated carbonate varves, which provide:

a, a yearly carrier for changes in environmental proxy like δ18O, Sr/Caand Mg/Ca of authochthonous precipitated carbonates which allow to detect short term climatic variations,

b, a continuous, non floating varve chronology back to 13,700±356 yrs BP.

Calculations based on an isotopic-hydrologic balance model show that temperature fluctuations are less important for the isotope enrichment in Lake Van than changes of the relative humidity. Thus a paleohumidity curve of Lake Van can be estimated and compared to a Mg/Ca record which is found to be a proxy for lake salinity.

Lake Van sediments indicate a first period of cold and arid climate between 12,600–10,460 yrs BP. During this time humidity decreased by 0.17 or 30% (no temperature shift) or 20%, if temperature is reduced by 5 °C.

A second phase of climatic change also occurred: in a first period (4,190–3,040yrs B.P.), slightly reduction in lake level and humidity mark a regional climate shift toward more continental climate with reduced precipitation. In a second period (3,040– 2,000 yrs B.P.), precipitation increased again, but humidity remained at a level reduced 5% below that encountered today.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, P.A., N. Roberts, H.F. Lamb, S. van der Kaars and A. Benkaddour, 1994. Interpretation of Holocene lake-level change from diatom assemblages in Lake Sidi, Middle Atlas, Marocco. Journal of Paleolimnology. 12: 223 – 234.CrossRefGoogle Scholar
  2. Baruch, U. and S. Bottema, 1991. Palynological evedence for climatic changes in the Levant ca. 17,000 – 9,000 BP. In: O. Bar-Yosef and F.R. Valla, (ed.), The Nutufian culture in the Levant. Ann Arbir, Michigan, Prehistory Press. pp. 11– 20.Google Scholar
  3. Behbehani, A.R., 1987. Sedimentations- und Klimageschichte des Spät- und Postglazials im Bereich der nordlichen Kalkalpen (Salzkammergutseen, Österreich). Göttinger Arbeiten zur Geologie und Paläontologie. 34:Google Scholar
  4. Casanova, J. and C. Hillaire-Marcel, 1993. Carbon and Oxygen Isotopes in African Lacustrine Stromatolites: Paleohydrological Interpretation. Geophysical Monograph. 78: 123 – 133.CrossRefGoogle Scholar
  5. Chivas, A.R., P. De Decker, J.A. Cali, A. Chapman, E. Kiss and J.M.G. Shelley, 1993. Coupled stable-isotope and trace-element measurements of lacustrine carbonates as paleoclimatic indicators. In: P.K. Swart, K.C. Lohmann, J.A. McKenzie and S.Google Scholar
  6. Savin, (ed.), Climate change in continental isotopic records. Washington, USA, American Geophysical Union, pp. 113–122.Google Scholar
  7. Courty, M.-A., 1994. The scenario of enviromental degradation in Tell Leilan region (NE Syria) during the late third millenium abrupt climate change. NATO ARW on Third Millenium BC abrupt climate change and old world social collapse. Kemer, Turkey: abstract volume. Google Scholar
  8. Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta.12: 133 – 149.CrossRefGoogle Scholar
  9. Craig, H. and L.I. Gordon, 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Conference on stable isotopes in oceanographic studies and paleotemperatures, Spoletto.9–130. Google Scholar
  10. Curtis, J.H. and D.A. Hodell, 1993. An Isotopic and trace element study of ostracods from Lake Miragoane, Haiti: A 10.500 year record of paleosalinity and paleotemperature changes in the Caribbean. In: P.K. Swart, K.C. Lohmann, J.A. McKenzie and S. Savin, (ed.), Climate change in continental isotopic records. Washington, USA, American Geophysical Union, pp. 135 – 152.CrossRefGoogle Scholar
  11. Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N. Gundestrup, C.U. Hammer, C.S. Hvidberg, J.P. Steffensen, A.E. Sveinbjörndottir, J. Jouzel and G. Bond, 1993. Evidence for general instability of past climate from a 250-kyr ice- core record. Nature. 364: 218 – 220.CrossRefGoogle Scholar
  12. Degens, E.T. and F. Kurtman, 1978. The Geology of Lake Van. Ankara, MTA Press.Google Scholar
  13. Epstein, S., R. Buchsbaum, H.A. Lowenstam and H.C. Urey, 1951. Carbonate-water isotopic temperature scale. Bull. Geol. Soc. America.62: 417 – 426.CrossRefGoogle Scholar
  14. Fontes, J.C., F. Melieres, E. Gibert, L. Qing and F. Gasse, 1993. Stable isotope and radiocarbon balances of two Tibetian lakes (Sumxi Co, Longmu Co) from 13.000 B.P. Quaternary Science Reviews. 12: 875 – 887.CrossRefGoogle Scholar
  15. Frey, W. and H. Kürschner, 1989. Vorderer Orient. 1:8000000, Karte A VI 1. Tübinger Atlas des Vorderen Orients. Wiesbaden, Dr. Ludwig Reichert Verlag. Google Scholar
  16. Gasse, F., M. Arnold, J.C. Fontes, M. Fort, E. Gilbert, A. Hue, Li Bingyan, Li Yuanfang, Li Qing, F. Méliéres, E. Van Campo, Wang Fubao and Z. Qingsong, 1991. A 13,000-year climat record from western Tibet. Nature. 353: 742 – 745.CrossRefGoogle Scholar
  17. Gat, J.R., 1995. Stable isotopes and the water balance of fresh and saline lakes. In: A. Lerman, D.M. Imboden and J.R. Gat, (ed.), Physics and chemistry of lakes. Heidelberg, Berlin, New York, Springer Verlag. pp. 139 – 166.Google Scholar
  18. Gat, J.R. and C. Bowser, 1991. The heavy isotope enrichment of water in coupled evaporative systems. Stable Isotope Geochemistry. 3: 159 – 168.Google Scholar
  19. Gerasimenko, N., 1994. Enviromental and climatic changes between 3 and 5 kyr PB in eastern Ukraine. NATO ARW on Third Millenium BC abrupt climate change and old world social collapse. Kemer, Turkey: abstract volume. Google Scholar
  20. Gonfiantini, R., 1986. Enviromental isotopes in lake studies. In: P. Fritz and J.C. Fontes, (ed.), Handbook of enviromental isotope geochemistry. Amsterdam, Oxford, New York, Tokyo, Elsevier, pp. 113 – 163.Google Scholar
  21. Hajdas, I., 1993. Extension of the Radiocarbon Calibration Curve by AMS Dating of Laminated Sediments of Lake Soppen and Holzmaar. PhD Thesis, ETH ZürichNr. 10157. pp. 147.Google Scholar
  22. Heinrichs, H. and A.G. Herrmann, 1990. Praktikum der analytischen Geochemie. Berlin, Heidelberg, New York, Springer Verlag. pp. 699.Google Scholar
  23. Kelts, K. and U. Briegel, 1986. The limnogeology-ETH coring system. Schweizerische Zeitschrift für Hydrologie. 48: 104 – 115.CrossRefGoogle Scholar
  24. Kempe, S., 1977. Hydrography, Warven-Chronologie und organische Geochemie des Van See, Ost Türkei. Mitt. Geol. Paläontol. Inst. Univ. Hamburg.47: 125 – 228.Google Scholar
  25. Kempe, S., J. Kazmierczak, G. Landmann, T. Konuk, A. Reimer and A. Lipp, 1991. Largest known mikrobialites discovered in Lake Van, Turkey. Nature. 349: 605– 608.CrossRefGoogle Scholar
  26. Kinsman, D J.J. and H.D. Holland, 1969. The co-prcipitation of cations with CaC03- IV. The co-precipitation of Sr with aragonite between 16° and 96°C. Geochimica et Cosmochimica Acta. 33: 1 – 17.CrossRefGoogle Scholar
  27. Kipfer, R., A.-H. W., H. Baur, M. Hofer, D.M. Imboden and P. Signer, 1994. Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth and Planetary Science Letter. 125: 357 – 370.CrossRefGoogle Scholar
  28. Lahann, R.W. and R.M. Siebert, 1982. A kinetic model for distribution coefficients and application to Mg-calcites. Geochimica et Cosmochimica Acta. 46: 2229– 2237.CrossRefGoogle Scholar
  29. Lamoureux, S.F., 1994. Embedding unfrozen sediments for thin section preparation. Journal of Paleolimnology. 10: 141 – 146.CrossRefGoogle Scholar
  30. Landmann, G., A. Reimer and S. Kempe, 1994. Die Sedimente des Van See. DFG Projekt Wo 395, 2–1 bis 2–4, final report. Google Scholar
  31. Lotter, A.F., 1989. Evidence of annual layering in Holocene sediments of Soppensee, Switzerland. Aquatic Sciences. 52: 19 – 30.CrossRefGoogle Scholar
  32. Lotter, A.F., B. Ammann, J. Beer, I. Hajdas and M. Sturm, 1991. A step towards an absolute time-scale for the Late-Glacial: annually laminated sediments from Soppensee (Switzerland). In: E. Bard and W.S. Broecker, (ed.), The Last Deglaciation: Absolute and Radiocarbon Chronologies. Heidelberg, Springer- Verlag. pp. 45 – 68.Google Scholar
  33. McKenzie, 1993. Pluvial conditions in the eastern Sahara following the penultimate deglaciation: imlications for changes in atmospheric circulation patterns with global warming. Palaeo. 103: 95 – 105.CrossRefGoogle Scholar
  34. Moore, M.M.T. and G.C. Hillman, 1992. The Pleistocene to Holocene transition and human economy in Southwest Asia: the impact of Younger Dry as. American Antiquity. 57: 482 – 494.CrossRefGoogle Scholar
  35. Morse, J.W. and F.T. Mackenzie, 1990. Geochemistry of sedimentary carbonates. New York, Elsevier Science Publishing Co. Google Scholar
  36. Mucci, A. and J.W. Morse, 1983. The incorporation of Mg and Sr into calcite overgrowths: influences of growth rate and solution composition. Geochimica et Cosmochimica Acta. 47: 217 – 233.CrossRefGoogle Scholar
  37. O’Neil, J.R., R.N. Clayton and T.K. Mayeda, 1969. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys.. 51: 5547 – 5558.CrossRefGoogle Scholar
  38. Oomori, T., H. Kaneshima and Y. Maezato, 1987. Distribution coefficient of Mgions between calcite and solution at 10–50°C. Marine Chemistry. 20: 327 – 336.CrossRefGoogle Scholar
  39. Pingitore Jr., N.E. and M.P. Eastman, 1986. The coprecipitation of Sr with calcite at 25° and 1 atm. Geochimica et Cosmochimica Acta. 50: 2195 – 2203.CrossRefGoogle Scholar
  40. Reimer, A., G. Landmann and S. Kempe, 1994. Wasserchemie des Van Sees, seiner Zuflüsse und der Porenwässer. DFG Projekt Wo 395/2–1 bis2–4, final report. Google Scholar
  41. Rubinson, M. and R.N. Clayton, 1969. Carbon-13 fractionation between aragonite and calcite. Geochim. Cosmochim. Acta. 33:Google Scholar
  42. Schlanger, S.O., 1965. Dolomite-evaporite relations on Pacific islands. Sci. Rep. Tohoku Univ.37: 15 – 29.Google Scholar
  43. Schöll, M. and E. Faber, 1978. Oxygen isotope study of Lake Van sediments and waters. In: E.T. Degens and F. Kurtman, (ed.), The geology of Lake Van. Min. Res. Explor. Inst. Türkey.Google Scholar
  44. Schwarzenbach, R.P., P.M. Gschwend and D.M. Imboden, 1993. Enviromental organic chemistry. New York, John Wiley &Sons, Inc. pp. 681Google Scholar
  45. Schweizer, G., 1975. Untersuchungen zur Physiogeographie von Ostanatolien und Nordwestiran. Geomorphologische, klima- und hydrogeographische Studien im Van See- und Rezaiyehsee-Gebiet. Tübinger Geographische Studien. 60/9:Google Scholar
  46. Stabel, H.-H., J. Küchler-Krischun, J. Kleiner and P. Merkel, 1986. Removal of strontium by coprecipitation in Lake Constance with calcite. Naturwissenschaften. 73: 551.CrossRefGoogle Scholar
  47. Street-Perrot, F.A. and N. Roberts, 1983. Fluctuation in closed basin lakes as an indicator of past atmospheric circulation patterns. In: F.A. Street Perrot, M. Beran and R. Ratcliffe, (ed.), Variations in the global water budged. D. Reidel Pblishing Company, pp. 331 – 345.Google Scholar
  48. Tarutani, T., R.N. Clayton and T.K. Mayeda, 1969. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochimica et Cosmochimica Acta. 33: 987 – 996.CrossRefGoogle Scholar
  49. Usdowski, H.E., 1967. Die Genese von Dolomit in Sedimenten. Mineralogie und Petrographie in Einzeldarstellungen. Berlin, Heidelberg, New York,, Springer Verlag. Google Scholar
  50. Weiss, H., M.-A. Courty, W. Wetterstrom, F. Guichard, L. Senior, R. Meadow and A. Curnow, 1993. The Genesis and Collapse of Third Millennium North mesopotamian Civilisation. Science. 261: 995 – 1004.CrossRefGoogle Scholar
  51. Weiss, H. and M.A. Courty, 1993. The genesis and collaps of the Akkadian Empire: the accidental refraction of historical law. In: M. Liverani, (ed.), Akkad: The first world empire. Padua: Sargon.Google Scholar
  52. Wright, H.E.J., 1993. Enviromental determinism in Near Eastern prehistoric archaeology. Current Antropology. Google Scholar
  53. Zeist van, W. and S. Bottema, 1991. Late Quaternary vegetation of the Near East. Beihefte zum Tübinger Atlas des Vorderen Orients. Wiesbaden, Dr. Ludwig Reichert Verlag. Google Scholar
  54. Zohary, M., 1973. Geobotanical Foundations in the Middle East. Stuttgart, Amsterdam,Google Scholar
  55. Zolitschka, B., 1994. Paleoclimatic and anthropogenic influences on the formation of annually laminated sediments from Lake Holzmaar, Germany. NATO ARW on Third Millenium BC abrupt climate change and old world social collapse. Kemer, Turkey: abstract volume. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gerry Lemcke
    • 1
  • Michael Sturm
    • 1
  1. 1.EAWAG, Swiss Federal Institute for Environmental Science and TechnologyDübendorfSwitzerland

Personalised recommendations