Skip to main content

New Approximation Methods for Planar Offset and Convolution Curves

  • Chapter
Geometric Modeling: Theory and Practice

Part of the book series: Focus on Computer Graphics ((FOCUS COMPUTER))

Abstract

We present new methods to approximate the offset and convolution of planar curves. These methods can be used as fundamental tools in various geometric applications such as NC machining and collision detection of planar curved objects. Using quadratic curve approximation and tangent field matching, the offset and convolution curves can be approximated by polynomial or rational curves within the tolerance of approximation error ∈ > 0. We suggest three methods of offset approximation, all of which allow simple error analysis and at the same time provide high-precision approximation. Two methods of convolution approximation are also suggested that approximate convolution curves with polynomial or rational curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahn, J.-W., Kim, M.-S., and Lim, S.-B.: Approximate general sweep boundary of a 2D curved object. CVGIP: Graphical Models and Image Processing, 55 (1993) 98–128.

    Article  Google Scholar 

  2. Bajaj, C and Kim, M.-S.: Generation of configuration space obstacles: The case of a moving sphere. IEEE J. of Robotics and Automation, 4 (1988) 94–99.

    Article  Google Scholar 

  3. Bajaj, C and Kim, M.-S.: Generation of configuration space obstacles: The case of moving algebraic curves. Algorithmica, 4 (1989) 157–172.

    Google Scholar 

  4. Bajaj, C. and Kim, M.-S.: Generation of configuration space obstacles: The case of moving algebraic surfaces. The Int’ J. of Robotics Research, 9 (1990) 92–112.

    Article  Google Scholar 

  5. Cobb, B.: Design of Sculptured Surface Using The B–spline Representation. PhD thesis, University of Utah, Computer Science Department, (1984).

    Google Scholar 

  6. Cohen, S., Elber, G., and Bar-Yehuda, R.: Matching of freeform curves, to appear in Computer-Aided Design, CIS Technical Report, CIS 9527 (1995).

    Google Scholar 

  7. Coquillart, S.: Computing offset of B–spline curves. Computer-Aided Design, 19 (1987) 305–309.

    Article  MATH  Google Scholar 

  8. Elber, G. and Cohen, E.: Error bounded variable distance offset operator for free form curves and surfaces. Int’ J. of Computational Geometry and Applications, 1 (1991) 67–78.

    Article  MathSciNet  MATH  Google Scholar 

  9. Elber, G.: Free Form Surface Analysis Using A Hybrid of Symbolic and Numerical Computation. PhD thesis, Department of Computer Science, The University of Utah, (1992).

    Google Scholar 

  10. Elber, G., Lee, I.-K., Kim, M.-S.: Qualitative and quantitative comparisons of offset curve approximation methods, to appear in IEEE Computer Graphics & Applications, (1997).

    Google Scholar 

  11. Farouki, R.T., and Rajan, V.T.: Algorithms for polynomials in Bernsten form. Computer Aided Geometric Design, 5 (1988) 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  12. Farouki, R.T., and Neff, C.A.: Algebraic properties of plane offset curves. Computer Aided Geometric Design, 7 (1990) 101–127.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghosh, P., and Mudur, S.P.: The brush-trajectory approach to figure specification: Some algebraic-solutions. ACM Trans, on Graphics, 3 (1984) 110–134.

    Google Scholar 

  14. Ghosh, P.: A mathematical model for shape description using Minkowski operators. Computer Vision, Graphics & Image Processing, 44 (1988) 239–269.

    Google Scholar 

  15. Ghosh, P.: A unified Computational framework for Minkowski operations. Computers and Graphics, 17 (1993) 357–378.

    Article  Google Scholar 

  16. Guibas, L., Ramshaw, L., and Stolti, J.: A kinetic framework for computer geometry. In Proc. of 24th Annual Symp. on Foundations of Computer Science, (1983) 100–111.

    Google Scholar 

  17. Held, M.: A geometry-based investigation of the tool path generation for zigzag pocket machining. The Visual Computer, 7 (1991) 296–308.

    Article  Google Scholar 

  18. Hoffman, C: Geometric and Solid Modeling. Morgan Kaufmann, (1989).

    Google Scholar 

  19. Hoschek, J.: Spline approximation of offset curves. Computer Aided Geometric Design, 5 (1988) 33–40.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoschek, J., and Wissel, N.: Optimal approximation conversion of spline curves and spline approximation of offset curves. Computer-Aided Design, 20 (1988) 475–483.

    Article  MATH  Google Scholar 

  21. Kaul, A., and Rossignac, J.R.: Solid interpolating deformations: Construction and animation of pip. Computers and Graphics, 16 (1992) 107–115.

    Article  Google Scholar 

  22. Kaul, A., and Farouki, R.T.: Computing Minkowski sums of plane curves. Int’ J. of Computational Geometry & Applications, 5 (1995) 413–432.

    Article  MathSciNet  MATH  Google Scholar 

  23. Klass, R.: An offset spline approximation for plane cubic splines. Computer-Aided Design, 15 (1983) 297–299.

    Article  Google Scholar 

  24. Kohler, M., and Spreng, M.: Fast computation of the C-space of convex 2D algebraic objects. The Int’ J. of Robotics Research, 14 (1995) 590–608.

    Article  Google Scholar 

  25. Lee, I.-K., and Kim, M.-S.: Primitive geometric operations on planar algebraic curves with Gaussian approximation. In T. L. Kunii, editor, Visual Computing, Springer-Verlag, (1992) 449–468.

    Google Scholar 

  26. Lee, I.-K., Kim, M.-S., and Elber, G.: Planar curve offset based on circle approximation, to appear in Computer-Aided Design, (1996).

    Google Scholar 

  27. Lozano-Pérez, T.: Spatial planning: A configuration space approach. IEEE Trans, on Computers, 32 (1983) 108–120.

    Google Scholar 

  28. Morken, K.: Best approximation of circle segments by quadratic Bézier curves. In P. J. Laurent, A. Le Méhauté, and L. L. Schumaker, editors, Curves and Surfaces, Academic Press, Boston, (1991) 331–336.

    Google Scholar 

  29. Pham, B.:Offset approximation of uniform B–splines. Computer-Aided Design, 20 (1988) 471–474.

    Google Scholar 

  30. Rossignac, J.R., and Requicha, A.A.G.: Offsetting operations in solid modeling. Computer Aided Geometric Design, 3 (1986) 129–148.

    Article  MATH  Google Scholar 

  31. Tiller, W., and Hanson, E.G.: Offsets of two dimensional profiles. IEEE Computer Graphics & Applications, 4 (1984) 36–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, IK., Kim, MS., Elber, G. (1997). New Approximation Methods for Planar Offset and Convolution Curves. In: Strasser, W., Klein, R., Rau, R. (eds) Geometric Modeling: Theory and Practice. Focus on Computer Graphics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60607-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60607-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61883-6

  • Online ISBN: 978-3-642-60607-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics