Skip to main content

Genetics and adaptation to climate change:A case study of trees

  • Conference paper

Part of the book series: NATO ASI Series ((ASII,volume 47))

Abstract

Most species are ephemeral features of the Earth system — an average species exists for about 10 million years (Vitousek 1992). Forest trees, especially evolutionarily ancient conifers, certainly belong to the longer lasting class of species. Trees have not only successfully survived changing geological periods as species, but also endure during an individual’s lifetime considerable fluctuations of environment without the chance of migration or short-term genetic adaptation on the population level as in case of annual plants and many animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala RJ (1969) An evolutionary dilemma:fitness of genotypes versus fitness of populations. Canad Journ Genet Cytol 11:439–456

    CAS  Google Scholar 

  • Ayala RJ (1969) An evolutionary dilemma:fitness of genotypes versus fitness of populations. Canad Journ Genet Cytol 11:439–456

    CAS  Google Scholar 

  • Bjørnstad Å (1981) Photoperiodical after-effect of parent plant environment in Norway spruce seedlings. Medd Nors Inst Skogforsk 36:1–30

    Google Scholar 

  • Davis MB (1980) Quaternary history and the stability of forest communities, inWest DC, Shugart HH, Botkin DB (eds) Forest succession:Concepts and Application, 132–153. Springer-Verlag, New York

    Google Scholar 

  • Devey ME, Delfino-Mix A, Kinloch BB, Neale DB (1995) Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci USA 92:2066–2070

    Article  PubMed  CAS  Google Scholar 

  • Eriksson G (1980) Severity index and transfer effects on survival and volume production of Pinus silvestrisin Northern Sweden. Stud For Suec Nr 156

    Google Scholar 

  • Giertych M (1996) Effect of thinnings on the evaluations of provenance experiments as exemplified by a Norway spruce ( Picea abiesKarst.) trial. inMétyés Cs (ed) Forest genetics and tree breeding:perspectives and challenges. IUFRO World Series, IUFRO Secretariat ed. Vienna (in press)

    Google Scholar 

  • Gray AJ (1996) Climate change and the reproductive biology of higher plants, inHuntley B, Cramer W, Morgan AV, Prentice HC, Allen JRM (eds) Past and future rapid environmental changes:The spatial and evolutionary responses of terrestrial biota, 371–380. Springer-Verlag, Berlin

    Google Scholar 

  • Hamrick JL, Godt MJ (1990) Allozyme diversity in plant species, inBrown AHD, Clegg MT, Kahler AL, Weir BS (eds), Plant population genetics, breeding, and genetic resources, 43–63. Sinauer Ass

    Google Scholar 

  • Kitzmiller J (1983) Progeny testing — objectives and design, inCharleston, SC (ed) Progeny testing. Proc Servicewide Genetics Workshop Dec. 5–9 1983, 231–247. USDA For Serv Timber Management

    Google Scholar 

  • Koski V (1991) Generative reproduction and genetic processes in nature, inGiertych M, Métyés Cs (eds) Genetics of Scots pine, 59–72. Elsevier Sci Publ

    Google Scholar 

  • Langlet O (1971) Two hundred years of genecology. Taxon 20:(5/6) 653–722

    Article  Google Scholar 

  • Ledig FT, Guries RP, Bonefield BA (1983) The relation of growth to heterozygosity in pitch pine. Evolution 37:1227–1238

    Article  Google Scholar 

  • Ledig FT (1986) Heterozygosity, heterosis, and fitness in outbreeding plants, inSoulé M (ed) Conservation biology:the science of scarcity and diversity, 77–104. Sinauer Assoc Sunderland, Mass

    Google Scholar 

  • Lindgren D, Wei RP (1994) Effects of maternal environment on mortality and growth in young Pinus silvestris in field trials. Tree Physiol 14:323–327

    PubMed  Google Scholar 

  • Mátyás Cs (1981) Kelet-európai erdeifenyo származásak fenológial változékonyság [Phenologic variability of East European Scots pine populations; in Hungarian with English summary] Erdészeti Kutat 74:71–79

    Google Scholar 

  • Mátyás Cs (1986) Nemesített szaporítóanyag gazdólkodás [Improved planting stock in forestry; in Hungarian] Akadémia Publ Budapest 136

    Google Scholar 

  • Mátyás Cs (1990) Adaptation lag:a general feature of natural populations. Proc Jt Meet WFGA and IUFRO WP Olympia, WA, USA Aug 20–25, 1990 Pap No 2. 226

    Google Scholar 

  • Mátyás Cs (1994) Modeling climate change effects with provenance test data. Tree Physiology 14:797–804

    PubMed  Google Scholar 

  • Mátyás Cs (1995) Climate of the Central Sierras. Progr. Report, Inst, of Forest Genetics, Placerville (manuscript )

    Google Scholar 

  • Mátyás Cs (1995) Climate of the Central Sierras. Progr. Report, Inst, of Forest Genetics, Placerville (manuscript )

    Google Scholar 

  • Mátyás Cs, Yeatman CW (1992) Effect of geographical transfer on growth and survival of jack pine (Pinus banksiana Lamb.) populations. Silvae Gen 43:6, 370–376

    Google Scholar 

  • Mikola J. (1982) Bud-set phenology as an indicator of climatic adaptation of Scots pine in Finland. Silvae Fennica 16:178–184

    Google Scholar 

  • Mitton JB, Grant MC (1984) Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann Rev Ecol Syst 15:479–499

    Article  Google Scholar 

  • Müller-Starck G (1991) Genetic processes in seed orchards, inGiertych M, Mátyás Cs (eds), Genetics of Scots pine, 147–162. Elsevier Sci Publ

    Google Scholar 

  • Powers DA, Lauerman T, Crawford D, DiMichele L (1991) Genetic mechanisms for adapting to a changing environment. Ann Rev Genet 25:629–659

    Article  PubMed  CAS  Google Scholar 

  • Rehfeldt GE (1988) Ecological genetics of Pinus contorta from the Rocky Mountains (USA):a synthesis. Silvae Gen 37:131–135

    Google Scholar 

  • Rehfeldt GE (1989) Ecological adaptations in Douglas-fir (Pseudotsuga menziesii var. glauca):a synthesis. For Ecol Manage 28:203–215

    Article  Google Scholar 

  • Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Ann Rev Ecol Syst 23:1–14

    Google Scholar 

  • Skrφppa T, Johnsen Th (1994) The genetic response of plant populations to a changing environment:the case for non-Mendelian processes, inBoyle TJB, Boyle CEB (eds), Biodiversity, temperate ecosystems, and global change, 183–199. Springer Verlag, Berlin

    Google Scholar 

  • Sorensen FC, Weber JC (1994) Genetic variation and seed transfer guidelines for ponderosa pine in the Ochoco and Malheur National Forests of Central Oregon. USDA For Serv Res Pap PNW-RP-468 26

    Google Scholar 

  • Timofeyev VP (1975) Stareishij opyt geograficheskikh kultur sosny obykhnovennoj [Oldest provenance test with Scots pine in the USSR at the TSHA experimental station; in Russian] inMateriali soveshchaniya o rabote uchebno-opytnykh leskhozov, 11–28. Tartu

    Google Scholar 

  • Ununger J, Ekberg I, Kang H (1988) Genetic control and age-related changes of juvenile growth characters in Picea abies. Scand Journ For Res 3:55–66

    Article  Google Scholar 

  • Vitousek PM (1992) Global environmental change:an introduction. Ann Rev Ecol Syst 23:1–14

    Article  Google Scholar 

  • Ying ChC, Liang Q (1994) Geographic pattern of adaptive variation of lodgepole pine within the species’ coastal range:field performance at age 20 years. Forest Ecol Manage 67:281–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Heidelberg

About this paper

Cite this paper

Mátyás, C. (1997). Genetics and adaptation to climate change:A case study of trees. In: Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C., Allen, J.R.M. (eds) Past and Future Rapid Environmental Changes. NATO ASI Series, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60599-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60599-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61877-5

  • Online ISBN: 978-3-642-60599-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics