Skip to main content

Large-Scale Simulations of Melting in Two-Dimensional Lennard-Jones Systems: Evidence for a Metastable Hexatic Phase

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics IX

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 82))

  • 144 Accesses

Abstract

Large scale molecular dynamics simulations have been performed for two-dimensional Lennard-Jones systems on massively parallel computers. The calculations were done in the NPT ensemble as recently reformulated by Melchionna et al., avoiding problems associated with mixed phases and artificial treatment of vacancies and interstitials. In the largest systems studied (36864 and 102400 atoms), a metastable hexatic phase was found between solid and liquid, in agreement with the predictions of the theory of melting in two dimensions developed by Kosterlitz and Thouless, Halperin and Nelson, and Young. The hexatic phase was not seen in smaller samples, calling into question the conclusions of many previous simulations performed on smaller systems and shorter time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Lindemann, Z. Phys. 11>, 609 (1910).

    Google Scholar 

  2. N. Q. Lam and P. R. Okamoto, MRS Bulletin/July 1994, p. 41.

    Google Scholar 

  3. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  4. B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  5. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  6. A. P. Young, Phys. Rev. B 19, 1855 (1979).

    Article  ADS  Google Scholar 

  7. C. A. Murray and D. H. Van Winkle, Phys. Rev. Lett. 58, 1200 (1987).

    Article  ADS  Google Scholar 

  8. 8.B. Pouligny, R. Malzbender, P. Ryan, and N. A. Clark, Phys. Rev. B 42, 988 (1990).

    Article  ADS  Google Scholar 

  9. R. Geer, T. Stoebe, C. C. Huang, R. Pindak, G. Srajer, J. W. Goodby, M. Cheng, J. T. Ho, and S. W. Hui, Phys. Rev. Lett. 66, 1322 (1991).

    Article  ADS  Google Scholar 

  10. R. E. Kusner, J. A. Mann, J. Kerins, and A. J. Dahm, Phys. Rev. Lett. 73, 3113 (1994).

    Article  ADS  Google Scholar 

  11. D. Frenkel and J. P. McTague, Phys. Rev. Lett. 42, 1632 (1979).

    Article  ADS  Google Scholar 

  12. F. F. Abraham, Phys. Rep. 80, 339 (1981); S. W. Koch and F. F. Abraham, Phys. Rev. B 27, 2964 (1983).

    Article  ADS  Google Scholar 

  13. S. W. Koch and F. F. Abraham, Phys. Rev. B 27, 2964 (1983).

    Article  ADS  Google Scholar 

  14. S. Toxvaerd, Phys. Rev. A 24, 2735 (1981).

    Article  ADS  Google Scholar 

  15. K. J. Strandburg, J. A. Zollweg, and G. V. Chester, Phys. Rev. B 30, 2755 (1984).

    Article  ADS  Google Scholar 

  16. A. F. Bakker, C. Bruin, and H. J. Hilhorst, Phys. Rev. Lett. 52, 449 (1984).

    Article  ADS  Google Scholar 

  17. C. Udink and J. van der Elsken, Phys. Rev. B 35, 279 (1987).

    Article  ADS  Google Scholar 

  18. H. Weber, D. Marx, and K. Binder, Phys Rev. B 51,14636 (1995); this paper contains an extensive list of references to previous work.

    Article  ADS  Google Scholar 

  19. P. Bladon and D. Frenkel, Phys. Rev. Lett. 74, 2519 (1995).

    Article  ADS  Google Scholar 

  20. K. Chen, T. Kaplan, and M. Mostoller, Phys. Rev. Lett. 74, 4019 (1995).

    Article  ADS  Google Scholar 

  21. An excellent review of the general theory and earlier calculations and experiments can be found in K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988). The total strain energy associated with an isolated dislocation diverges as log(R), where R measures the system size, but for a pair of dislocations with equal and opposite Burgers vectors, the strain energy is finite.

    Google Scholar 

  22. W. C. Swope and H. C. Anderson, Phys. Rev. A 46, 4539 (1992).

    Article  ADS  Google Scholar 

  23. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981); J. Chem. Phys. 76, 2662 (1982).

    Article  ADS  Google Scholar 

  24. C. L. Cleveland, J. Chem. Phys. 89, 4987 (1988).

    Article  ADS  Google Scholar 

  25. R. M. Wentzcovich, Phys. Rev. B 44, 2358 (1991).

    Article  ADS  Google Scholar 

  26. M. Li and W. M. Johnson, Phys. Rev. B 46, 5237 (1992).

    Article  ADS  Google Scholar 

  27. S. Melchionna, G. Cicotti, and B. L. Holian, Mol. Phys. 78, 533 (1993).

    Article  ADS  Google Scholar 

  28. K. Bagshi, H. C. Andersen, and W. Swope, Phys. Rev. Lett. 76, 255 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, K., Kaplan, T., Mostoller, M. (1997). Large-Scale Simulations of Melting in Two-Dimensional Lennard-Jones Systems: Evidence for a Metastable Hexatic Phase. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics IX. Springer Proceedings in Physics, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60597-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60597-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64470-2

  • Online ISBN: 978-3-642-60597-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics