The Path-Integral Monte Carlo Method for Rotational Degrees of Freedom

  • M. H. Müser
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 82)

Abstract

Very recent progress in the path-integral simulation of quantum mechanical rotational degrees of freedom (RDOF) is reviewed. Unlike translational degrees of freedom, where the free particle kernel can be obtained by a Gaussian integral, the kernel for RDOF is not analytically accessible. However, it can be obtained numerically to high precision on a fine grid so that all systematic errors can be kept controllably small. The formulae to generate the kernel for RDOF are given explicitly for one, two, and three-dimensional rotation. In particular, we discuss the consequences of confining the rotational state of a rigid body to one representation for the sign problem and the correlation time. A linear rotor in a Devonshire potential and solid methane are considered as examples.

Keywords

Sugar Methane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Quantum Simulation of Condensed Matter Phenomena, Proceedings on an international Workshop, edited by J.D. Doll and J.E. Gubernatis (World Scientific, Singapore, 1990).Google Scholar
  2. [2]
    K.E. Schmidt and D.M. Ceperley, in Monte Carlo techniques for quantum fluids, solids and droplets, Topics in Appl. Phys. Vol. 71, edited by K. Binder (Springer, Berlin, 1992).Google Scholar
  3. [3]
    L.S. Schulman, Techniques and Applications of Path Integrations (John Wiley & Sons, New York, 1981).Google Scholar
  4. [4]
    M. H. Müser, Molecular Simulation, in press.Google Scholar
  5. [5]
    E.Y. Loh, Jr. and J.E. Gubernatis, R.T. Scalettar, S.R. White, D.J. Scalapino, and R.L. Sugar, Phys. Rev. B 41, 9301 (1990).ADSCrossRefGoogle Scholar
  6. [6]
    H. De Raedt and M. Frick, Phys. Rep. 231, 107 (1993).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    R.A. Kuharski and P.J. Rossky, J. Chem. Phys. 82, 5164 (1985).ADSCrossRefGoogle Scholar
  8. [8]
    R.N. Zare, Angular Momentum (John Wiley & Sons, New York, 1988).Google Scholar
  9. [9]
    M.H. Müser and B.J. Berne, The path-integral Monte Carlo scheme for rigid tops, (preprint).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. H. Müser
    • 1
  1. 1.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations