Role of Complement in Xenograft Rejection

  • A. P. Dalmasso

Abstract

The immediate fate of a xenograft is largely dependent on the species relationship of the donor-host combination, which can be concordant or discordant. In a concordant combination donor and host belong to closely related species and there is no hyperacute rejection (HAR) of the transplant [1]. The recipient does not have preformed antibodies against the endothelium of the donor organ; in addition, the vascular endothelium of the donor does not directly activate recipient complement. In contrast, in a discordant combination complement activation by preexisting antibodies in the recipient or by the vascular endothelium of the donor organ causes HAR of the xenograft [2]. Biologically active fragments and protein complexes derived from complement activate and damage the endothelial cells of the graft, and recruit and activate recipient blood cells, resulting in interstitial edema, hemorrhage, and thrombosis, which ultimately destroy the graft within minutes or a few hours of revascularization.

Keywords

Complement Activation Membrane Attack Complex Natural Antibody Complement Inhibitor Membrane Cofactor Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calne, R.Y. Organ transplantation between widely disparate species. Transplant. Proc. 2, 550, 1970PubMedGoogle Scholar
  2. 2.
    Piatt, J.L., Vercellotti, G.M., Dalmasso, A.P., et al. Transplantation of discordant xenografts: a review of progress. Immunol. Today. 11, 450, 1990CrossRefGoogle Scholar
  3. 3.
    Dalmasso, A.P. The complement system in xenotransplantation. Immunopharmacol. 24, 149, 1992CrossRefGoogle Scholar
  4. 4.
    Hasan, R., Van den Bogaerde, J., Forty, J., et al. Xenograft adaptation is dependent on the presence of antispecies antibody, not prolonged residence in the recipient. Transplant. Proc. 24, 531, 1992PubMedGoogle Scholar
  5. 5.
    Dalmasso, A.P. Complement in the pathophysiology and diagnosis of human diseases. Crit. Rev. Clin. Lab. Sci. 24, 123, 1986PubMedCrossRefGoogle Scholar
  6. 6.
    Müller-Eberhard, HJ., Complement: chemistry and pathways. In: Gallin, J.I., Goldstein, I.M., Snyderman, R., (eds.) Inflammation. Basic Principles and Clinical Correlates. Raven Press, New York, p. 33, 1992Google Scholar
  7. 7.
    Frank, M.M., Complement system. In: Frank, M.M., Austen, K.F., Claman, H.N., Unanue, E.R., (eds.) Samter’s Immunological Diseases. Little, Brown and Co., Boston, p. 331, 199, 1995Google Scholar
  8. 8.
    Dalmasso, A.P., Benson, B.A., Pore size of lesions induced by complement on red cell membranes and its relation to C5b-8, C5b-9 and poly C9. In: Podack, E.R., (ed.) Cytolytic lymphocyte clones and complement as effectors of the immune system. CRC Press, p. 207, 1988Google Scholar
  9. 9.
    Morgan, B.P., Cellular responses to the membrane attack complex. In: Whaley, K., Loos, M., Weiler, J., (eds.) Immunology and Medicine Vol. 20. Kluwer Academic Publishers, p. 325, 1993Google Scholar
  10. 10.
    Davis, A.E. Ci inhibitor and hereditary angioneurotic edema. Ann. Rev. Immunol. 6, 595, 1988CrossRefGoogle Scholar
  11. 11.
    Hourcade, D., Holers, V.M., Atkinson, J.P. The regulators of complement activation (RCA) gene cluster. Adv. Immunol. 45, 381,1989PubMedCrossRefGoogle Scholar
  12. 12.
    Atkinson, J.P., Oglesby, T.J., White, D., Adams, E.A., Liszewski, M.K. Separation of self from non-self in the complement system: a role for membrane cofactor protein and decay accelerating factor. Clin. Exp. Immunol. 86, S1, 1991Google Scholar
  13. 13.
    Nicholson-Weller, A., Wang, C. Structure and function of decay accelerating factor CD55. J. Lab. Clin. Med. 123, 485, 1994PubMedGoogle Scholar
  14. 14.
    Meri, S. Protectin (CD59). Complement lysis inhibitor and prototype domain in a new protein superfamily. The Immunologist. 2, 149, 1994Google Scholar
  15. 15.
    Rosse, W.F., Ware, R.E. The molecular basis of paroxysmal nocturnal hemoglobinuria. Blood. 86, 3277, 1995PubMedGoogle Scholar
  16. 16.
    Dalmasso, A.P., Vercellotti, G.M., Platt, J.L., Bach, F.H. Inhibition of complement-mediated endothelial cell cytotoxicity by decay accelerating factor. Potential for prevention of xenograft hyperacute rejection. Transplantation. 52, 530, 1991PubMedCrossRefGoogle Scholar
  17. 17.
    Baldwin, W.M., III, Pruitt, S.K., Brauer, R.B., Daha, M.R., Sanfilippo, E Complement in organ transplantation: Contributions to inflammation, injury, and rejection. Transplantation. 59, 797, 1995PubMedGoogle Scholar
  18. 18.
    Hamilton, K.K., Hattori, R., Esmon, CT., Sims, P.J. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. Biol. Chem. 265, 3809, 1990Google Scholar
  19. 19.
    Dalmasso, A.P., Vercellotti, G.M., Fischel, R.J., et al. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am. J. Pathol. 140, 1157, 1992PubMedGoogle Scholar
  20. 20.
    Schaapherder, A.F.M., Gooszen, H.G., Te Bulte, M.T.J.W, Daha, M.R. Human complement activation via the alternative pathway on porcine endothelium initiated by IgA antibodies. Transplantation. 60, 287, 1995PubMedCrossRefGoogle Scholar
  21. 21.
    Kroshus, T.J., Bolman, R.M., Dalmasso, A.P. Selective IgM reduction prolongs organ survival in an ex vivo model of pig-to-human xenotransplantation. Transplantation. 62, 5, 1996PubMedCrossRefGoogle Scholar
  22. 22.
    Miyagawa, S., Hirose, H., Shirakura, R., et al. The mechanism of discordant xenograft rejection. Transplantation. 46, 825, 1988PubMedCrossRefGoogle Scholar
  23. 23.
    Gambiez, L., Weill, B.J., Chereau, C, Calmus, Y., Houssin, D. The hyperacute rejection of guinea pig to rat heart xenografts is mediated by preformed IgM. Transplant. Proc. 22, 1058, 1990Google Scholar
  24. 24.
    Johnston, P.S., Lim, S.M.L., Wang, M.W., Wright, L., White, D.J.G. Hyperacute rejection of xenografts in the complete absence of antibody. Transplant. Proc. 23, 877, 1991PubMedGoogle Scholar
  25. 25.
    Hancock, W.W., Rajasinghe, H.A., Reddy, V.M., et al. Correction of congenital cardiac defects by fetal or neonatal discordant xenografting: initial results and key role of activation of the alternative pathway of complement. Abs. 3rd. Internat. Congr. Xeno-transplant. P041, 1995Google Scholar
  26. 26.
    Jefferson, K.P., Tyerman, K.S., McLeish, M., Collier, D.S.J., Thiru, S. Donor Pretreatment prolongs survival of discordant xenografts. Transplant. Proc. 23, 2280, 1991PubMedGoogle Scholar
  27. 27.
    Leventhal, J.R., Dalmasso, A.P., Cromwell, J.W., et al. Prolongation of cardiac xenograft survival by depletion of complement. Transplantation. 55, 857, 1993PubMedCrossRefGoogle Scholar
  28. 28.
    Leventhal, J.R., Matas, A.J., Sun, L.H., et al. The immunopathology of cardiac xenograft rejection in the guinea pig-to-rat model. Transplantation. 56, 1, 1993PubMedCrossRefGoogle Scholar
  29. 29.
    Leventhal, J.R., Sakiyalak, P., Witson, J., et al. The synergistic effect of combined antibody and complement depletion on discordant cardiac xenograft survival in nonhu-man primates. Transplantation. 57, 974, 1994PubMedCrossRefGoogle Scholar
  30. 30.
    Chartrand, C, O’Regan, S., Robitaille, R, Pinto-Blonde, M. Delayed rejection of cardiac xenografts in Co-deficient rabbits. Immunology. 38, 245, 1979PubMedGoogle Scholar
  31. 31.
    Zhow, X.J., Niesen, N., Pawlowski, I., et al. Prolongation of survival of discordant kidney xenografts by C6 deficiency. Transplantation. 50, 896, 1990PubMedCrossRefGoogle Scholar
  32. 32.
    Brauer, R.B., Baldwin, W.M.I., Daha, M.R., Pruitt, S.K., Sanfilippo, F. Use of Co-deficient rats to evaluate the mechanism of hyperacute rejection of discordant cardiac xenografts. J. Immunol. 151, 7240, 1993PubMedGoogle Scholar
  33. 33.
    Johnson, E.M., Leventhal, J., Dalmasso, A.R, et al. Inactivation of C3 and C5 prolongs cardiac xenograft survival and decreases leukocyte infiltration in a model of delayed xenograft rejection. Transplant. Proc. 28, 603, 1996PubMedGoogle Scholar
  34. 34.
    Büchner, B., Schraa, E.O., Bonthuis, R, et al. Beneficial effect of complement depletion and treatment with dexamethasone in discordant xenografting. Abs. 3rd. Internat. Congr. Xenotransplant. Po81, 1995Google Scholar
  35. 35.
    Johnson, E.M., Leventhal, J., Dalmasso, A.R, et al. Use of a novel CDnb/CDi8 inhibitory agent in a C6 deficient rat to evaluate delayed xenograft rejection. Transplant. Proc. 28, 728, 1996PubMedGoogle Scholar
  36. 36.
    Kroshus, T.J., Rollins, S.A., Dalmasso, A.R, et al. Complement inhibition with an anti-C5 monoclonal antibody prevents acute cardiac tissue injury in an ex vivo model of pig-to-human xenotransplantation. Transplantation. 60, 1194, 1995PubMedGoogle Scholar
  37. 37.
    Rollins, S.A., Matis, L.A., Springhorn, J.R, Setter, E., Wolff, D.W. Monoclonal antibodies directed against human C5 and C8 block complement-mediated damage of xenogeneic cells and organs. Transplantation. 60, 1284, 1995PubMedGoogle Scholar
  38. 38.
    Piatt, J.L., Vercellotti, G.M., Lindman, B., et al. Release of heparan sulfate from endothelial cells: implications for pathogenesis of hyperacute rejection. J. Exp. Med. 171, 1363, 1990CrossRefGoogle Scholar
  39. 39.
    Piatt, J.L., Dalmasso, A.R, Lindman, B.J., Ihrcke, N.S., Bach, RH. The role of C5a and antibody in the release of heparan sulfate from endothelial cells. Eur. J. Immunol. 21, 2887, 1991CrossRefGoogle Scholar
  40. 40.
    Saadi, S., Platt, J.L. Transient perturbation of endothelial integrity induced by natural antibodies and complement. J. Exp. Med. 181, 21, 1995PubMedCrossRefGoogle Scholar
  41. 41.
    Peerschke, E.I., Reid, K.B., Ghebrehiwet, B. Platelet activation by Ciq results in the induction of alpha lib/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J. Exp. Med. 178, 579, 1993PubMedCrossRefGoogle Scholar
  42. 42.
    Vercellotti, G.M., Piatt, J, Bach, RH., Dalmasso, A.R Neutrophil adhesion to xenogeneic endothelium via iC3b. J. Immunol. 146, 730, 1991PubMedGoogle Scholar
  43. 43.
    Bustos, M., Saadi, S., Piatt, J.L. Modulation of endothelial metabolism by xenogenic serum: implications for vasoconstriction and permeability. Transplant. Proc. 28, 624, 1996PubMedGoogle Scholar
  44. 44.
    Stahl, G.L., Reenstra, W.R., Frendl, G. Complement-mediated loss of endothelium-dependent relaxation of porcine coronary arteries. Role of the terminal membrane attack complex. Circ. Res. 76, 575, 1995PubMedGoogle Scholar
  45. 45.
    Blakely, M.L., Van der Werf, W.J., Berndt, M.C., et al. Activation of intragraft endothelial and mononuclear cells during discordant xenograft rejection. Transplantation. 58, 1059,1994PubMedGoogle Scholar
  46. 46.
    Fryer, J., Leventhal, J.R., Dalmasso, A.R, et al. Cellular rejection in a discordant xenograft when hyperacute rejection is prevented: analysis using adoptive and passive transfer. Transplant Immunol. 2, 87, 1994CrossRefGoogle Scholar
  47. 47.
    Fryer, J.P., Leventhal, J.R., Dalmasso, A.P., et al. Beyond hyperacute rejection. Accelerated rejection in a discordant xenograft model by adoptive transfer of specific cell subsets. Transplantation. 59, 171, 1995PubMedGoogle Scholar
  48. 48.
    Vanhove, B., de Martin, R., Lipp, J., Bach, RH. Human xenoreactive natural antibodies of the IgM isotype activate pig endothelial cells. Xenotransplantation. 1, 17, 1994CrossRefGoogle Scholar
  49. 49.
    Dalmasso, A.P., He, T., Benson, B.A. Human IgM xenoreactive natural antibodies can induce resistance of porcine endothelial cells to complement-mediated injury. Xenotransplantation. 3, 54, 1996CrossRefGoogle Scholar
  50. 50.
    Alexandre, G.P.J., Squifflet, J.P., De Bruyère, M., et al. Present experience in a series of 26 ABO-incompatible living donor renal allografts. Transplant. Proc. 19, 4538, 1987PubMedGoogle Scholar
  51. 51.
    Bannett, A.D., McAlack, R.R, Morris, M., Chopek, M.W., Platt, J.L. ABO incompatible renal transplantation: a qualitative analysis of native endothelial tissue ABO antigens after transplantation. Transplant. Proc. 21, 783, 1989PubMedGoogle Scholar
  52. 52.
    Bach, RH., Turman, M.A., Vercellotti, G.M., Platt, J.L., Dalmasso, A.P. Accommodation: a working paradigm for progressing toward clinical discordant xenografting. Transplant. Proc. 23, 205, 1991PubMedGoogle Scholar
  53. 53.
    Cooper, D.K.C., Ye, Y., Niekrasz, M., et al. Specific intravenous carbohydrate therapy -a new concept in inhibiting antibody-mediated rejection: experience with ABO-incompatible cardiac allografting in the baboon. Transplantation. 56, 769, 1993PubMedCrossRefGoogle Scholar
  54. 54.
    Fischel, R.J., Matas, A.J., Perry, E., et al. Plasma exchange, organ perfusion, and immunosuppression reduce “natural” antibody levels as measured by binding to xenogeneic endothelial cells and prolong discordant xenograft survival. Transplant. Proc. 24, 574, 1992PubMedGoogle Scholar
  55. 55.
    Oglesby, T.J., Allen, C.J., Liszewski, M.K., White, D.J.G., Atkinson, J.P. Membrane cofac-tor protein (CD46) protects cells from complement-mediated attack by an intrinsic mechanism. J. Exp. Med. 175, 1547, 1992PubMedCrossRefGoogle Scholar
  56. 56.
    Zhao, J., Rollins, S.A., Maher, S.E., Bothwell, A.L., Sims, P.J. Amplified gene expression in CD59-transfected Chinese hamster ovary cells confers protection against the membrane attack complex of human complement. J. Biol. Chem. 266, 13418, 1991PubMedGoogle Scholar
  57. 57.
    Akami, T., Sawada, R., Minato, N., et al. Cytoprotective effect of CD59 antigen on xenotransplantation immunity. Transplant. Proc. 24, 485, 1992PubMedGoogle Scholar
  58. 58.
    Charreau, B., Cassard, A., Tesson, L., et al. Protection of rat endothelial cells from primate complement-mediated lysis by expression of human CD59 and/or decay-accelerating factor. Transplantation. 58, 1222, 1994PubMedGoogle Scholar
  59. 59.
    McCurry, K.R., Kooyman, D.L., Alvarado, CG., et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nature Med. 1, 423, 1995PubMedCrossRefGoogle Scholar
  60. 60.
    Fodor, W.L., Williams, B.L., Matis, L.A., et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc. Natl. Acad. Sci. USA. 91, 11153, 1994Google Scholar
  61. 61.
    Rosengard, A.M., Cary, N.R.B., Langford, G.A., et al. Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs: a potential approach for preventing xenograft rejection. Transplantation. 59, 1325, 1995PubMedGoogle Scholar
  62. 62.
    Somerville, CA., Kyriazis, A.G., McKenzie, A., et al. Functional expression of human CD59 in transgenic mice. Transplantation. 58, 1430, 1994PubMedGoogle Scholar
  63. 63.
    Mulder, L.C.F., Mora, M., Lazzeri, M., et al. Human MCP and DAF double transgenic mice are completely protected from human complement attack in an in vivo model. Transplant. Proc. 28, 589, 1996PubMedGoogle Scholar
  64. 64.
    Langford, G.A., Cozzi, E., Yannoutsos, N., et al. Production of pigs transgenic for human regulators of complement activation using YAC technology. Transplant. Proc. 28, 862, 1966Google Scholar
  65. 65.
    Sandrin, M.S., Vaughan, H.A., Dabkowski, P.L., McKenzie, I.EC. Anti-pig IgM antibodies in human serum react predominantly with Gal(α1-3)Gal epitopes. Proc. Natl. Acad. Sci. USA. 90, 11391, 1993Google Scholar
  66. 66.
    Cowan, P.J., Witort, E., Barlow, H., Pearse, M.J., d’Apice, A.J.F. Expression of CD59 in transgenic mice using the human ICAM-2 promoter. Abs. 3rd. Internat. Congr. Xeno-transplant. P079, 1995Google Scholar
  67. 67.
    Fodor, W.L., Rollins, S.A., Guilmette, E.R., Setter, E., Squinto, S.P. A novel bifunctional chimeric complement inhibitor that regulates C3 convertase and formation of the membrane attack complex. J. Immunol. 155, 4135, 1995PubMedGoogle Scholar
  68. 68.
    Tucker, A.W., Davies, H.S., Carrington, CA., et al. The fertility and breeding potential of boars expressing a functional regulator of human complement activation. Transplant. Proc. 28, 642, 1996PubMedGoogle Scholar
  69. 69.
    Pascual, M., French, L.E. Complement in human diseases: looking towards the 21st century. Immunol. Today. 16, 58, 1995PubMedCrossRefGoogle Scholar
  70. 70.
    Charreau, B., Tesson, L., Quantin, B., Soulillou, J.P., Anegon, I. Adenovirus-mediated expression of human CD59 in xenogeneic endothelial cells. Abs. 3rd. Internat. Congr. Xenotransplant. po86, 1995Google Scholar
  71. 71.
    Pierson, R.N., Conary, J.T., Langford, G., et al. Targeted in vivo gene transfection modulates hyperacute rejection of pig lungs perfused with human blood. Transplant. Proc. 28, 763, 1996PubMedGoogle Scholar
  72. 72.
    Kooyman, D.L., Byrne, G.W., McClellan, S., et al. In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science. 269, 89,1995PubMedCrossRefGoogle Scholar
  73. 73.
    Kroshus, T.J., Bolman, R.M., Dalmasso, A.P. Studies on transfer of primate membrane-associated complement inhibitors from recipient blood to porcine donor organs. Transplant. Proc. 28, 601, 1996PubMedGoogle Scholar
  74. 74.
    Miyagawa, S., Shirakura, R., Matsumiya, G., et al. Prolonging discordant xenograft survival with anticomplement reagents K76COOH and FUT175. Transplantation. 55, 709, 1993PubMedCrossRefGoogle Scholar
  75. 75.
    Dalmasso, A.P., Platt, J.L. Prevention of complement-mediated activation of xenogeneic endothelial cells in an in vitro model of xenograft hyperacute rejection by Ci inhibitor. Transplantation. 56, 1171, 1993PubMedCrossRefGoogle Scholar
  76. 76.
    Dalmasso, A.P., Piatt, J.L. Potentiation of Ci inhibitor plus heparin in prevention of complement-mediated activation of endothelial cells in a model of xenograft hyperacute rejection. Transplant. Proc. 26, 1246, 1994PubMedGoogle Scholar
  77. 77.
    Stevens, R.B., Wang, Y.L., Kaji, H., et al. Administration of nonanticoagulant heparin inhibits the loss of glycosaminoglycans from xenogeneic cardiac grafts and prolongs graft survival. Transplant. Proc. 25, 382, 1993PubMedGoogle Scholar
  78. 78.
    Weisman, H.F., Bartow, T., Leppo, M.K., et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science. 249, 146, 1990PubMedCrossRefGoogle Scholar
  79. 79.
    Pruitt, S.K., Baldwin, W.M., Marsh, H.C., Jr., et al. The effect of soluble complement receptor type 1 on hyperacute xenograft rejection. Transplantation. 52, 868, 1991PubMedCrossRefGoogle Scholar
  80. 80.
    Xia, W., Fearon, D.T., Moore, F.D., Jr., et al. Prolongation of guinea pig cardiac xenograft survival in rats by soluble human complement receptor type 1. Transplant. Proc. 24 479, 1992PubMedGoogle Scholar
  81. 81.
    Pruitt, S.K., Kirk, A.D., Bollinger, R.R., et al. The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation. 57, 363, 1994PubMedCrossRefGoogle Scholar
  82. 82.
    Pruitt, S.K., Bollinger, R.R., Collins, B.H., et al. Continuous complement (C) inhibition using soluble C receptor type 1 (sCRi): effect on hyperacute rejection (HAR) of pig-to-primate cardiac xenografts. Transplant. Proc. 28, 756, 1996PubMedGoogle Scholar
  83. 83.
    Ryan, U.S. Complement inhibitory therapeutics and xenotransplantation. Nature Med. 1, 967, 1995PubMedCrossRefGoogle Scholar
  84. 84.
    Loveland, B.E., Christiansen, D., Milland, J., et al. Production and characterization of recombinant soluble CD46, an effective complement regulator in vitro and in vivo. Abs. 3rd. Internat. Congr. Xenotransplant. or58, 1995Google Scholar
  85. 85.
    Vogel, C.W., Müller-Eberhard, H.J. The cobra venom factor-dependent C3 convertase of human complement. J. Biol. Chem. 257, 8292, 1982PubMedGoogle Scholar
  86. 86.
    Leventhal, J.R., Ranjit, J., Fryer, J.P., et al. Removal of baboon and human antiporcine IgG and IgM natural antibodies by immunoadsorption. Results of in vitro and in vivo studies. Transplantation. 59, 294, 1995PubMedGoogle Scholar
  87. 87.
    Basta, M., Fries, L.F., Frank, M.M. High doses of intravenous Ig inhibit in vitro uptake of C4 fragments onto sensitized erythrocytes. Blood. 77, 376, 1991PubMedGoogle Scholar
  88. 88.
    Latremouille, C, Haeffner-Cavaillon, N., Goussef, N., et al. Normal human polyclonal immunoglobulins for intravenous use significantly delay hyperacute xenograft rejection. Transplant. Proc. 26, 1285, 1994PubMedGoogle Scholar
  89. 89.
    Gautreau, C, Kojima, T., Woimant, G., et al. Use of intravenous immunoglobulin to delay xenogeneic hyperacute rejection. An in vivo and in vitro evaluation. Transplantation. 60, 903, 1995PubMedGoogle Scholar
  90. 90.
    Magee, J.C., Collins, B.H., Harland, R.C., et al. Immunoglobulin prevents complement-mediated hyperacute rejection in swine-to-primate xenotransplantation. J. Clin. Invest. 96, 2404, 1995PubMedCrossRefGoogle Scholar
  91. 91.
    Matis, L.A., Rollins, S.A. Complement-specific antibodies: Designing novel antiinflammatories. Nature Med. 1, 839, 1995PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. P. Dalmasso

There are no affiliations available

Personalised recommendations