Natural Antibody Polymorphism and Anti-Galα1–3Gal Antibodies

  • T. D. H. Cairns
  • J. Lee
  • L. C. Goldberg
  • B. E. Samuelsson
  • D. H. Taube


The best characterized natural antibodies are anti-carbohydrate antibodies. Landsteiner described blood group A and B isoagglutinins in 1900 [1], but the original, earlier descriptions of natural antibodies were of heterophile agglutinins [2], some of which were cross-absorbable between species. Landsteiner [3] observed that species in which the target antigen of a heterophile agglutinin was absent would have naturally occurring agglutinins specific for that antigen, much as he had described individuals within a species as having A or B isoagglutinins whenever blood group A or B was absent. He regarded the presence of antigen within a species as following genera or families (although not exclusively), and the presence of heterophile agglutinin as doing likewise in a reciprocal fashion.


Natural Antibody Rabbit Erythrocyte Terminal Linkage Natural Human Antibody Link Galactose Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    LANDSTEINER, K. Zur Kenntis der antifermentativen, lytischen and agglutinierenden Wirkungen des Blutserums und der Lymphe. Centr. Bakt. Orig. 1900; 27:357Google Scholar
  2. 2.
    LANDOIS, L. In: Die Transfusion des Blutes. Vogel, Leipzig, 1875Google Scholar
  3. 3.
    LANDSTEINER, K. In: The Specificity of Serological Reactions. Dover, New York, 1962, p. 127Google Scholar
  4. 4.
    FRIEDBERGER, E., BOCK, G., FURSTENHEIM, A. Zur Normalantikoerkurve des Mensch durch die verschiedenen Lebensalter und ihre Bedeutung fur die Erklärung der Hautteste (Schick, Dick). Z. Immun.-Forsch. 1929; 64:294Google Scholar
  5. 5.
    TONDER, O., MILGROM, F. Studies on agglutination by macromolecular antibodies. I. Agglutination of rabbit erythrocytes by human sera. Vox. Sang. 1965; 10:708PubMedCrossRefGoogle Scholar
  6. 6.
    TONDER, O., NATVIG, J., MATRE, R. Antibodies in human sera to rabbit erythrocytes. Immunology. 1967; 12:629PubMedGoogle Scholar
  7. 7.
    STELLNER, K., SAITO, H., HAKOMORI, S. Determination of aminosugar linkage in glycolipids by methylation. Aminosugar linkage of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch. Biochem. Biophys. 1973; 155:464PubMedCrossRefGoogle Scholar
  8. 8.
    SUZUKI, E., NAIKI, M. Heterophile antibodies to rabbit erythrocytes in human sera and identification of the antigen as a glycölipid. J. Biochem. 1984; 95:103PubMedGoogle Scholar
  9. 9.
    GALILI, U., MACHER, B., BUEHLER, J., et al. Human natural anti-a-galactosyl IgG. II. The specific recognition of α(1-3)-linked galactose residues. J. Exp. Med. 1985; 162:573PubMedCrossRefGoogle Scholar
  10. 10.
    BIRD, G., ROY, T. Human serum antibodies to melibiose and other carbohydrates. Vox. Sang. 1980; 38:169PubMedCrossRefGoogle Scholar
  11. 11.
    WIESLANDER, J., MANSSON, O., KALLIN, E., et al. Specificity of human antibodies against Galα1-3Gal carbohydrate epitope and distinction from natural antibodies reacting with Galα1-2Gal or Galα1-4Gal. Glycoconj. J. 1990; 7:85CrossRefGoogle Scholar
  12. 12.
    AVILA, J., ROJAS, M., VELAZQUEZ-AVILA, G. Characterization of a natural human antibody with anti-galactosyl(α1-2)galactose specificity that is present in high titers in chronic Trypanosoma cruzi infection. Am. J. Trop. Med. Hyg. 1992; 47:413PubMedGoogle Scholar
  13. 13.
    RIEBEN, R., FRAUENFELDER, A., NYDEGGER, U. Naturally occurring ABO antibodies: long-term stable, individually distinct anti-A IgG spectrotypes. Eur. J. Immunol. 1992; 22:2129Google Scholar
  14. 14.
    HAMMELMANN, W., GRAY, D., CAIRNS, T., et al. Immediate destruction of xenogeneic islets in a primate model. Transplantation. 1994; 58:1109Google Scholar
  15. 15.
    GOOD, A.H., COOPER, D.K.C., MALCOLM, A.J., et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xeno-grafting in humans. Transplant. Proc. 1992; 24:559PubMedGoogle Scholar
  16. 16.
    SAMUELSSON, B., RYDBERG, L., BREIMER, M., et al. Natural antibodies and xenotransplantation. Immunol. Rev. 1994; 141;151PubMedCrossRefGoogle Scholar
  17. 17.
    COOPER, D.K.C., KOREN, E., ORIOL, R. Oligosaccharides and discordant xenotransplantation. Immunol. Rev. 1994; 141:31PubMedCrossRefGoogle Scholar
  18. 18.
    HOPPNER, W., FISCHER, K., POSCHMANN, A., et al. Use of synthetic antigens with the carbohydrate structure of asialoglycophorin A for the specification of Thomsen-Fredenreich antibodies. Vox. Sang. 1985; 48:246PubMedCrossRefGoogle Scholar
  19. 19.
    CISAR, J., KABAT, E., DORNER, M., et al. Binding properties of immunoglobulin combining sites specific for terminal or nonterminal antigenic determinants in dextran. J. Exp. Med. 1975; 142:435PubMedCrossRefGoogle Scholar
  20. 20.
    BUNDLE, D., EICHLER, E., GIDNEY, M., et al. Molecular recognition of a Salmonella trisaccharide epitope by monoclonal antibody Sei55-4. Biochemistry. 1994; 33:5172.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • T. D. H. Cairns
  • J. Lee
  • L. C. Goldberg
  • B. E. Samuelsson
  • D. H. Taube

There are no affiliations available

Personalised recommendations