Skip to main content

Xenogeneic Tolerance Through Hematopoietic Cell and Thymic Transplantation

  • Chapter
Book cover Xenotransplantation

Abstract

Induction of donor-specific tolerance would be desirable and might even be essential to the success of clinical xenotransplantation for several reasons:

  1. 1.

    It would eliminate the risk of acute or chronic rejection. Chronic rejection currently leads to eventual graft loss in a high percentage of allograft recipients, despite recent improvements in immunosuppressive therapy. In view of the frequently greater difficulty that is encountered in attenuating xenoresponses than alloresponses [1], it seems likely that both acute and chronic rejection might be a major limitation to xenogeneic organ transplantation, even if the initial natural antibody-induced hyperacute rejection problem could be overcome.

  2. 2.

    A state of tolerance would obviate the need for chronic imunosuppressive therapy with its attendant risks of opportunistic infection, malignancy and organ toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auchincloss HA. Why is cell-mediated xenograft rejection so strong? Xeno 1995, 3: 19

    Google Scholar 

  2. Billingham RE, Brent L, Medawar PB. “Actively acquired tolerance” of foreign cells. Nature 1953, 172: 603

    Article  PubMed  CAS  Google Scholar 

  3. Ildstad ST, Sachs DH. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 1984, 307(5947): 168

    Article  PubMed  CAS  Google Scholar 

  4. Sykes M, Sheard M, Sachs DH. Effects of T cell depletion in radiation bone marrow chimeras. I Evidence for a donor cell population which increases allogeneic chimerism but which lacks the potential to produce GVHD. J Immunol 1988, 141: 2282

    Google Scholar 

  5. Mar rack P, Lo D, Brinster R, et al. The effect of thymus environment on T cell development and tolerance. Cell 1988, 53: 627

    Article  CAS  Google Scholar 

  6. Slavin S. Total lymphoid irradiation. Immunol Today 1987, 3: 88

    Article  Google Scholar 

  7. Pierce GE. Allogeneic versus semiallogeneic Fi bone marrow transplantation into sublethally irradiated MHC-disparate hosts. Effects on mixed lymphoid chimerism, skin graft tolerance, host survival, and alloreactivity. Transplantation 1990, 49: 138

    Article  PubMed  CAS  Google Scholar 

  8. Mayumi H, Good RA. Long-lasting skin allograft tolerance in adult mice induced across fully allogeneic (multimajor H-2 plus multiminor histocompatibility) antigen barriers by a tolerance-inducing method using cyclophosphamide. J Exp Med 1989,169: 213

    Article  PubMed  CAS  Google Scholar 

  9. Clift RA, Storb R. Histoincompatible bone marrow transplants in humans. Ann Rev Immunol 1987, 5: 43

    Article  CAS  Google Scholar 

  10. O’Reilly RJ, Collins NH, Kernan N, et al. Transplantation of marrow depleted of T cells by soybean lectin agglutination and E-rosette depletion: major histocompatibility complex-related graft resistance in leukemic transplant recipients. Transplant Proc 1985, 17: 455

    Google Scholar 

  11. Anasetti C, Amos D, Beatty PG, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med 1989, 320: 197

    Article  PubMed  CAS  Google Scholar 

  12. Ildstad ST, Wren SM, Sharrow SO, Stephany D, Sachs DH. In vivo and in vitro characterization of specific hyporeactivity to skin xenografts in mixed xenogeneically reconstituted mice (B10+ F344 rat→B10). J Exp Med 1984, 160: 1820

    Article  PubMed  CAS  Google Scholar 

  13. Santos GW, Cole LJ. Effects of donor and host lymphoid and myeloid tissue injections in lethally X-irradiated mice treated with rat bone marrow. J Natl Cancer Inst 1958, 21: 279

    PubMed  CAS  Google Scholar 

  14. Bau J, Thierfelder S. Antilymphocytic antibodies and marrow transplantation. Transplantation 1973, 15: 564

    Article  PubMed  CAS  Google Scholar 

  15. Muller-Rucholtz W, Muller-Hermelink HK, Wottge HU. Induction of lasting hematopoietic chimerism in a xenogeneic (rat → mouse) model. Transplant Proc 1979, 11: 517

    Google Scholar 

  16. Deeg HJ, Storb R, Thomas ED. Bone marrow transplantation: a review of delayed complications. Br J Haematol 1984, 57: 185

    PubMed  CAS  Google Scholar 

  17. Freirich EJ, Gehan EA, Rail DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anti-cancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemotherapy Rep 1966, 50: 219

    Google Scholar 

  18. Sullivan K M, Witherspoon R P, Storb R, et al. Chronic graft-versus-host disease: recent advances in diagnosis and treatment. In: Gale R P, Champlin R, eds. Alan R. Liss, Inc., New York, 1989: 511

    Google Scholar 

  19. Makinodan T. Circulating rat cells in lethally irradiated mice protected with rat bone marrow. Proc Soc Exp Biol Med 1956, 92: 174

    PubMed  CAS  Google Scholar 

  20. Gale RP, Reisner Y. Graft rejection and graft-versus-host disease: mirror images. Lancet 1986, i: 1468

    Google Scholar 

  21. Poynton CH. T cell depletion in bone marrow transplantation. Bone Marrow Transplant 1988, 3: 265

    PubMed  CAS  Google Scholar 

  22. Martin PJ, Hansen JA, Buckner CD, et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood 1985, 66: 664

    PubMed  CAS  Google Scholar 

  23. Kernan NA, Flomenberg N, Dupont B, O’Reilly RJ. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia. Transplantation 1987, 43: 842

    PubMed  CAS  Google Scholar 

  24. Soderling CCB, Song CW, Blazar BR, Vallera DA. A correlation between conditioning and engraftment in recipients of MHC-mismatched T cell-depleted murine bone marrow transplants. J Immunol 1985, 135: 941

    PubMed  CAS  Google Scholar 

  25. Ferrara JLM, Lipton J, Hellman S, Burakoff S, Mauch P. Engraftment following T-cell-depleted marrow transplantation. Transplantation 1987, 43: 461

    Article  PubMed  CAS  Google Scholar 

  26. Zinkernagel RM, Callahan GN, Althage A, Cooper S, Klein PA, Klein J. On the thymus in the differentiation of “H-2 self-recognition” by T cells: evidence for dual recognition? J Exp Med 1978, 147: 882

    Article  PubMed  CAS  Google Scholar 

  27. Singer A, Hathcock KS, Hodes RJ. Self recognition in allogeneic radiation chimeras. A radiation resistant host element dictates the self specificity and immune response gene phenotype of T-helper cells. J Exp Med 1981, 153: 1286

    Article  PubMed  CAS  Google Scholar 

  28. Ildstad ST, Wren SM, Bluestone JA, Barbieri SA, Sachs DH. Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J Exp Med 1985, 162: 231

    Article  PubMed  CAS  Google Scholar 

  29. Zinkernagel RM, Althage A, Callahan G, Welsh Jr RM. On the immunocompetence of H-2 incompatible irradiation bone marrow chimeras. J Immunol 1980, 124: 2356

    PubMed  CAS  Google Scholar 

  30. Ruedi E, Sykes M, Ildstad ST, et al. Antiviral T cell competence and restriction specificty of mixed allogeneic (P1+P2 → Pi) irradiation chimeras. Cell Immuol 1989, 121: 185

    Article  CAS  Google Scholar 

  31. Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a non-lethal preparative regimen. J Exp Med 1989, 169: 493

    Article  PubMed  CAS  Google Scholar 

  32. Sharabi Y, Aksentijevich I, Sundt III TM, Sachs DH, Sykes M. Specific tolerance induction across a xenogeneic barrier: production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen. J Exp Med 1990, 172: 195

    Article  PubMed  CAS  Google Scholar 

  33. Moretta L, Ciccone E, Moretta A, Hoglund P, Ohlen C, Karre K. Allorecognition by NK cells: nonself or no self? Immunol Today 1992, 13: 300

    Article  PubMed  CAS  Google Scholar 

  34. Bix M, Liao N-S, Zijlstra M, Loring J, Jaenisch R, Raulet D. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 1991, 349: 329

    Article  PubMed  CAS  Google Scholar 

  35. Salcedo M, Hoglund P, Ljunggren H-G. Natural killer cell interaction with murine allogeneic MHC class I molecules. Transplantation 1995, 60: 281

    Article  PubMed  CAS  Google Scholar 

  36. Yankelevich B, Knobloch C, Nowicki M, Dennert G. A novel cell type responsible for marrow graft rejection in mice. T cells with NK phenotype cause acute rejection of marrow grafts. J Immunol 1989, 142: 3423

    PubMed  CAS  Google Scholar 

  37. Kikly K, Dennert G. Evidence for a role for T cell receptors (TCR) in the effector phase of acute bone marrow graft rejection. TCR Vb5 transgenic mice lack effector cells able to cause graft rejection. J Immunol 1992, 149: 3489

    PubMed  CAS  Google Scholar 

  38. Takeda K, Moore MW, Dennert G. Acute rejection of marrow grafts in mice. Dependence on and independence of functional TCR in the rejection process. J Immunol 1994, 152: 4407

    PubMed  CAS  Google Scholar 

  39. Okumura C, Suto R, Furukawa K, et al. Induction of murine gamma-delta T cells cytotoxic for xenogeneic rat cells. J Immunol 1995, 154: 1114

    PubMed  CAS  Google Scholar 

  40. Tomita Y, Sachs DH, Khan A, Sykes M. Additional mAb injections can replace thymic irradiation to allow induction of mixed chimerism and tolerance in mice receiving bone marrow transplantation after conditioning with anti-T cell mAbs and 3 Gy whole body irradiation. Transplantation 1996, 61: 469

    Article  PubMed  CAS  Google Scholar 

  41. Tomita Y, Lee LA, Sykes M. Engraftment of rat bone marrow and its role in negative selection of murine T cells in mice conditioned with a modified non-myeloablative regimen. Xenotransplantation 1994, 1: 109

    Article  Google Scholar 

  42. van Ewijk W, Ron Y, Monaco J, et al. Compartmentalization of MHC class II gene expression in transgenic mice. Cell 1988, 53: 357

    Article  PubMed  Google Scholar 

  43. Ramsdell F, Fowlkes BJ. Clonal deletion versus clonal anergy: the role of the thymus in inducing self tolerance. Science 1990, 248: 1342

    Article  PubMed  CAS  Google Scholar 

  44. Schonrich G, Strauss G, Muller K-P, et al. Distinct requirements of positive and negative selection for selecting cell type and CD8 interaction. J Immunol 1993, 151: 4098

    PubMed  CAS  Google Scholar 

  45. Tomita Y, Khan A, Sykes M. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantion in mice conditioned with a non-myeloablative regimen. J Immunol 1994, 153: 1087

    PubMed  CAS  Google Scholar 

  46. Matzinger P, Guerder S. Does T cell tolerance require a dedicated antigen-presenting cell? Nature 1989, 338: 74

    Article  PubMed  CAS  Google Scholar 

  47. Inaba M, Inaba K, Hosono M, et al. Distinct mechanisms of neonatal tolerance induced by dendritic cells and thymic B cells. J Exp Med 1991, 173: 549

    Article  PubMed  CAS  Google Scholar 

  48. Tomita Y, Khan A, Sykes M. Mechanism by which additional monoclonal antibody injections overcome the requirement for thymic irradiation to achieve mixed chimerism in mice receiving bone marrow transplantation after conditioning with anti-T cell mAbs and 3 Gy whole body irradiation. Transplantation 1996, 61: 477

    Article  PubMed  CAS  Google Scholar 

  49. Aksentijevich I, Sachs DH, Sykes M. Humoral tolerance in xenogeneic BMT recipients conditioned with a non-myeloablative regimen. Transplantation 1992, 53: 1108

    Article  PubMed  CAS  Google Scholar 

  50. Aksentijevich I, Sachs DH, Sykes M. Normal mouse serum contains natural antibody against bone marrow cells of a concordant xenogeneic species. J Immunol 1991, 147: 79

    PubMed  CAS  Google Scholar 

  51. Aksentijevich I, Sachs DH, Sykes M. Natural antibodies can inhibit bone marrow engraftment in the rat → mouse species combination. J Immunol 1991, 147: 4140

    PubMed  CAS  Google Scholar 

  52. Lee LA, Sergio JJ, Sachs DH, Sykes M. Mechanism of tolerance in mixed xenogeneic chimeras prepared with a non-myeloablative conditioning regimen. Transplant Proc 1994, 26: 1197

    PubMed  CAS  Google Scholar 

  53. Latinne D, Vitiello D, Sachs DH, Sykes M. Tolerance to discordant xenografts: I. Human natural antibody determinants are shared on miniature swine bone marrow cells and endothelial cells. Transplantation 1994, 57: 238

    Article  PubMed  CAS  Google Scholar 

  54. Murakami M, Tsubata T, Okamoto M, et al. Antigen-induced apoptotic death of Ly-1 B cells responsible for autoimmune disease in transgenic mice. Nature 1992, 357: 77

    Article  PubMed  CAS  Google Scholar 

  55. Lee LA, Sergio JJ, Sykes M. Evidence for non-immune mechanisms in the loss of hematopoietic chimerism in rat → mouse mixed xenogeneic chimeras. Xenotransplantation 1995, 2: 57

    Article  Google Scholar 

  56. Gritsch, H.A. and Sykes, M. Host morrow for a competitive advantage which limits donor hematopoietic repopulation in mixed xenogeneic chimeras. In press, Xenotransplantation

    Google Scholar 

  57. Taylor R. A pig in a poke? Xenotransplants and infectious disease. Nature Med 1995, 1: 728

    Article  CAS  Google Scholar 

  58. Sachs D H. MHC-Homozygous miniature swine. In: Swindle M M, Moody D C, Phillips L D, eds. Iowa State University Press, Ames,IA, 1992: 3

    Google Scholar 

  59. Sachs DH, Leight G, Cone J, Schwarz S, Stuart L, Rosenberg S. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation 1976, 22: 559

    Article  PubMed  CAS  Google Scholar 

  60. Schuler W, Weiler I J, Schuler A, et al. Rearrangement of antigen receptor genes is defective in mice with severe combined immunodeficiency. Cell 1986, 46: 963

    Article  PubMed  CAS  Google Scholar 

  61. Gritsch HA, Glaser RM, Emery DW, et al. The importance of non-immune factors in reconstitution by discordant xenogeneic hematopoietic cells. Transplantation 1994, 57: 906

    Article  PubMed  CAS  Google Scholar 

  62. Emery DW, Sykes M, Sachs DH, LeGuern C. Mixed swine/human long-term bone marrow cultures. Transplant Proc 1994, 26: 1313

    PubMed  CAS  Google Scholar 

  63. Yang Y-G, Sergio JJ, Swenson K, Glaser RM, Monroy R, Sykes M. Donor-specific growth factors promote swine hematopoiesis in SCID mice. Xenotransplantation 1996, 3: 92

    Article  Google Scholar 

  64. Kawai T, Cosimi AB, Colvin RB, et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomologous monkeys. Transplantation 1995, 59: 256

    PubMed  CAS  Google Scholar 

  65. Latinne D, Gianello P, Smith CV, et al. Xenotransplantation from pig to cynomolgus monkey: An approach toward tolerance induction. Transplant Proc 1993, 250: 336

    Google Scholar 

  66. McDermott WV, Norman JC. Extracorporeal pig liver perfusion in the treatment of hepatic coma. Epatologia 1972, 18: 265

    Google Scholar 

  67. Collins BH, Chari RS, Magee JC, et al. Mechanisms of injury in porcine livers perfused with blood of patients with fulminant hepatic failure. Transplantation 1994, 58: 1162

    PubMed  CAS  Google Scholar 

  68. Oriol R, Ye Y, Koren E, Cooper DKC. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation 1993, 56: 1433

    Article  PubMed  CAS  Google Scholar 

  69. Sandrin MS, McKenzie IF. Gal alpha (1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies. Immunol Rev 1994, 141: 169

    Article  PubMed  CAS  Google Scholar 

  70. Alexandre G P J, Gianello P, Latinne D, et al. Plasmapheresis and splenectomy in experimental renal xenotransplantation. In: Hardy M A, ed. Excerpta Medica, New York, 1989: 259

    Google Scholar 

  71. Alexandre GP, Squifflet JP, De Bruyere M, et al. Present experiences in a series of 26 ABO-incompatible living donor renal allografts. Transplant Proc 1987, 19: 4538

    PubMed  CAS  Google Scholar 

  72. Thomas FT, Tepper MA, Thomas JM, Haisch CE. 15-Deoxyspergualin: a novel immunosuppressive drug with clinical potential. Ann NY Acad Sei 1993, 685: 175

    Article  CAS  Google Scholar 

  73. Tanaka M, Latinne D, Gianello P, et al. Xenotransplantation from pig to cynomolgus monkey: the potential for overcoming xenograft rejection through induction of chimerism. Transplant Proc 1994, 26: 1326

    PubMed  CAS  Google Scholar 

  74. Sharabi Y, Abraham VS, Sykes M, Sachs DH. Mixed allogeneic chimeras prepared by a non-myeloablative regimen: requirement for chimerism to maintain tolerance. Bone Marrow Transplant 1992, 9: 191

    PubMed  CAS  Google Scholar 

  75. Khan A, Tomita Y, Sykes M. Thymic dependence of loss of tolerance in mixed allogeneic bone marrow chimeras after depletion of donor antigen. Peripheral mechanisms do not contribute to maintenance of tolerance. Transplantation 1996,62: 380

    Article  PubMed  CAS  Google Scholar 

  76. Lee LA, Gritsch HA, Sergio JJ, et al. Specific tolerance across a discordant xenogeneic transplantation barrier. Proc Natl Acad Sei USA 1994, 91: 10864

    Article  CAS  Google Scholar 

  77. Zhao Y, Swenson K, Sergio JJ, Arn JS, Sachs DH, Syker M. Skin graft tolerance across a discordant xenogeneic barrier. Nature Med 1996, 2: 1211

    Article  PubMed  CAS  Google Scholar 

  78. Speiser DE, Pircher H, Ohashi PS, Kyburz D, Hengartner H, Zinkernagel RM. Clonal deletion induced by either radioresistant thymic host cells or lymphohemopoietic donor cells at different stages of class I-restricted T cell ontogeny. J Exp Med 1992,175: 1277

    Article  PubMed  CAS  Google Scholar 

  79. Salaun J, Bandeira A, Khazaal I, et al. Thymic epithelium tolerizes for histocompatibility antigens. Science 1990, 247: 1471

    Article  PubMed  CAS  Google Scholar 

  80. Gao E-K, Lo D, Sprent J. Strong T cell tolerance in parent→ F1 bone marrow chimeras prepared with supralethal irradiation. J Exp Med 1990, 171: 1101

    Article  PubMed  CAS  Google Scholar 

  81. Bonomo A, Matzinger P. Thymus epithelium induces tissue-specific tolerance. J Exp Med 1993, 177: 1153

    Article  PubMed  CAS  Google Scholar 

  82. Ramsdell F, Lantz T, Fowlkes BJ. A nondeletional mechanism of thymic self tolerance. Science 1989, 246: 1038

    Article  PubMed  CAS  Google Scholar 

  83. Bradley SM, Kruisbeek AM, Singer A. Cytotoxic T lymphocyte response in allogeneic radiation bone marrow chimeras. The chimeric host strictly dictates the self-repertoire of la-restricted T cells but not K/D-restricted T cells. J Exp Med 1982, 156: 1650

    Article  PubMed  CAS  Google Scholar 

  84. Geha RS, Rosen FS. The evolution of MHC restrictions in antigen recognition by T cells in a haploidentical bone marrow transplant recipient. J Immunol 1989, 143: 84

    PubMed  CAS  Google Scholar 

  85. Chu E, Umetsu D, Rosen F, Geha RS. Major histocompatibility restriction of antigen recognition by T cells in a recipient of haplotype mismatched human bone marrow transplantation. J Clin Invest 1983, 72: 1124

    Article  PubMed  CAS  Google Scholar 

  86. Roncarolo MG, Yssel H, Touraine J-L, et al. Antigen recognition by MHC-incompatible cells of a human mismatched chimera. J Exp Med 1988, 168: 2139

    Google Scholar 

  87. Kollman TR, Goldstein MM, Goldstein H. The concurrent maturation of mouse and human thymocytes in human fetal thymus implanted in NIH-biege-nude-xid mice is associated with reconstitution of the murine immune system. J Exp Med 1993, 177: 821

    Article  Google Scholar 

  88. Bevan MJ, Fink PJ. The influence of thymus H-2 antigens on the specificity of maturing killer and helper cells. Immunol Rev 1978, 42: 3

    Article  PubMed  CAS  Google Scholar 

  89. Mackall CL, Fleisher TA, Brown MR, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 1995, 332: 143

    Article  PubMed  CAS  Google Scholar 

  90. Annett G, Weinberg K, Kashyap A, et al. Post-transplantation thymic function predicts immunocompetence. Blood 1994, 84: 250a.(Abstrac1t)

    Google Scholar 

  91. Stanley SK, McCune JM, Kaneshima H, et al. Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J Exp Med 1993, 178: 1151

    Article  PubMed  CAS  Google Scholar 

  92. Grody WW, Fligiel S, Naeim F. Thymus involution in the acquired immunodeficiencysyndrome. Am J Clin Pathol 1985, 84: 85

    PubMed  CAS  Google Scholar 

  93. Kollman TR, Kim A, Pettoello-Mantovani M, et al. Divergent effects of chronic HIV-1 infection on human thymocyte maturation in SCID-hu mice. J Immunol 1995, 154: 907

    Google Scholar 

  94. Schuurman H-J, Krone WJA, Broekhuizen R, et al. The thymus in acquired immune deficiency syndrome. Comoparison with other types of immunodeficiency diseases, and presence of components of human immunodeficiency virus type 1. Am J Pathol 1989, 134: 1329

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sykes, M., Sachs, D.H. (1997). Xenogeneic Tolerance Through Hematopoietic Cell and Thymic Transplantation. In: Cooper, D.K.C., Kemp, E., Platt, J.L., White, D.J.G. (eds) Xenotransplantation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60572-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60572-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64460-3

  • Online ISBN: 978-3-642-60572-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics