Hyperacute Xenograft Rejection

  • J. L. Platt


An organ from a donor of one species transplanted into a recipient of another species is subject to hyperacute xenograft rejection. Some combinations of donor and recipient species give rise almost invariably to hyperacute xenograft rejection; these combinations have been called “discordant” [1]. Some combinations of donor and recipient species are less apt to give rise to hyperacute xenograft rejection; these combinations have been called “concordant.” Since in a given species combination, hyperacute xenograft rejection occurs nearly always or not at all, hyperacute xenograft rejection has been widely believed to have a genetic basis and to be a reflection of phylogenetic distance between the donor and the recipient [2–4]. During the past several years, the molecular basis for hyperacute xenograft rejection has been elucidated, at least in part, and thus it has become possible to define the mechanisms of susceptibility to rejection without resorting to the imprecision of a phylogenetic classification. The sections that follow will summarize the mechanisms contributing to the susceptibility to hyperacute xenograft rejection and how these mechanisms contribute to the devastating pathological changes characteristic of that lesion.


Natural Killer Cell Heparan Sulfate Complement Regulatory Protein Hyperacute Rejection Xenograft Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calne, R.Y. Organ transplantation beween widely disparate species. Transplant. Proc. 2, 550, 1970PubMedGoogle Scholar
  2. 2.
    Perper, R.J.Najarian, J.S. Experimental renal heterotransplantation. I. In widely divergent species. Transplantation 4, 377, 1966PubMedCrossRefGoogle Scholar
  3. 3.
    Hammer, C, Suckfull, M.Saumweber, D. Evolutionary and immunological aspects of xenotransplantation. Transplant. Proc. 24, 2397, 1992PubMedGoogle Scholar
  4. 4.
    Piatt, J.L., Vercellotti, G.M., Dalmasso, A.P., et al. Transplantation of discordant xenografts: a review of progress. Immunol.Today 11, 450, 1990CrossRefGoogle Scholar
  5. 5.
    Rose, A.G., Cooper, D.K.C., Human, P.A., Reichenspurner, H.Reichart, B. Histopathol-ogy of hyperacute rejection of the heart: experimental and clinical observations in allografts and xenografts. J.Heart Lung Transplant. 10, 223, 1991PubMedGoogle Scholar
  6. 6.
    Alexandre, G.P.J., Gianello, P., Latinne, D., et al. Plasmapheresis and splenectomy in experimental renal xenotransplantation. In edited by Hardy, M.A. (Ed.) Xenograft 25. Elsevier Science Publishers, New York, NY, 1989, p. 259Google Scholar
  7. 7.
    Piatt, J.L., Fischel, R.J., Matas, A.J., et al. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation 52, 214, 1991CrossRefGoogle Scholar
  8. 8.
    Cooper, D.K.C., Human, P.A., Lexer, G., et al. Effects of cyclosporine and antibody adsorption on pig cardiac xenograft survival in the baboon. J.Heart Transplant. 7, 238, 1988PubMedGoogle Scholar
  9. 9.
    Dalmasso, A.P., Vercellotti, G.M., Fischel, R.J., et al. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am.J.Pathol. 140, 1157, 1992PubMedGoogle Scholar
  10. 10.
    Kaplon, R.J., Michler, R.E., Xu, H., et al. Absence of hyperacute rejection in newborn pig-to-baboon cardiac xenografts. Transplantation 59, 1, 1994CrossRefGoogle Scholar
  11. 11.
    Good, A.H., Cooper, D.K.C., Malcolm, A.J., et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant. Proc. 24, 559, 1992PubMedGoogle Scholar
  12. 12.
    Eckhardt, A.E.Goldstein, I.J. Isolation and characterization of a family of α-D-galacto-syl-containing glycopeptides from Ehrlich ascites tumor cells. Biochem. 22, 5290, 1983CrossRefGoogle Scholar
  13. 13.
    Galili, U., Macher, B.A., Buehler, J.Shohet, S.B. Human natural anti-α-galactosyl IgG: the specific recognition of α(1–3)-linked glactose residues. J.Exp.Med. 162, 573, 1985PubMedCrossRefGoogle Scholar
  14. 14.
    Galili, U., Clark, M.R., Shohet, S.B., Buehler, J.Macher, B.A. Evolutionary relationship between the natural anti-Gal antibody and the Galα1–3Gal epitope in primates. Proc-Natl.Acad.Sci.USA 84, 1369, 1987PubMedCrossRefGoogle Scholar
  15. 15.
    Galili, U.Swanson, K. Gene sequences suggest inactivation of α-1, 3-galactosyltransfer-ase in catarrhines after the divergence of apes from monkeys. Proc.Natl.Acad.Sci.USA 88, 7401, 1991PubMedCrossRefGoogle Scholar
  16. 16.
    Galili, U., Shohet, S.B., Kobrin, E., Stults, C.L.M.Macher, B.A. Man, apes, and old world monkeys differ from other mammals in the expression of α-Galactosyl epitopes on nucleated cells. J.Biol.Chem. 263, 17755, 1988PubMedGoogle Scholar
  17. 17.
    Sandrin, M.S., Vaughan, H.A., Dabkowski, P.L.McKenzie, I.RC. Anti-pig IgM antibodies in human serum react predominantly with Galα(1,3)Gal epitopes. Proc.Natl.Acad.Sci.USA 90, 11391, 1993PubMedCrossRefGoogle Scholar
  18. 18.
    Collins, B.H., Parker, W.R.Platt, J.L. Characterization of porcine endothelial cell determinants recognized by human natural antibodies. Xenotransplantation 1, 36, 1994CrossRefGoogle Scholar
  19. 19.
    Collins, B.H., Cotterell, A.H., McCurry, K.R., et al. Hyperacute rejection of cardiac xenografts between primate species: evidence to support the significance of the α-Galactosyl determinant. J.Immunol. 154, 5500, 1995PubMedGoogle Scholar
  20. 20.
    Piatt, J.L., Vercellotti, G.M., Lindman, B.J., et al. Release of heparan sulfate from endothelial cells: Implications for pathogenesis of hyperacute rejection. J.Exp.Med. 171, 1363, 1990CrossRefGoogle Scholar
  21. 21.
    Parker, W.R., Bruno, D., Holzknecht, Z.E.Platt, J.L. Xenoreactive natural antibodies: isolation and initial characterization. J.Immunol. 153, 3791, 1994PubMedGoogle Scholar
  22. 22.
    Holzknecht, Z.E.Platt, J.L. Identification of porcine endothelial cell membrane antigens recognized by human xenoreactive antibodies. J.Immunol. 154, 4565, 1995PubMedGoogle Scholar
  23. 23.
    Magee, J.C., Collins, B.H., Harland, R.C., et al. Immunoglobulin prevents complement mediated hyperacute rejection in swine-to-primate xenotransplantation. J.Clin.Invest. 96, 2404, 1995PubMedCrossRefGoogle Scholar
  24. 24.
    Parker, W., Lundberg-Swanson, K.L., Holzknecht, Z.E., et al. Isohemagglutinins and xenoreactive antibodies: members of a distinct family of natural antibodies. Hum.Im-munol. 45, 94, 1996CrossRefGoogle Scholar
  25. 25.
    Miyagawa, S., Hirose, H., Shirakura, R., et al. The mechanism of discordant xenograft rejection. Transplantation 46, 825, 1988PubMedCrossRefGoogle Scholar
  26. 26.
    Johnston, P.S., Wang, M.-W., Lim, S.M.L., Wright, L.J.White, D.J.G. Discordant xenograft rejection in an antibody-free model. Transplantation 54, 573, 1992PubMedCrossRefGoogle Scholar
  27. 27.
    Leventhal, J.R., Matas, A.J., Sun, L.H., et al. The immunopathology of cardiac xenograft rejection in the guinea pig to rat model. Transplantation 56, 1, 1993PubMedCrossRefGoogle Scholar
  28. 28.
    Dalmasso, A.P., Vercellotti, G.M., Platt, J.L.Bach, RH. Inhibition of complement-mediated endothelial cell cytotoxicity by decay accelerating factor: Potential for prevention of xenograft hyperacute rejection. Transplantation 52, 530, 1991PubMedCrossRefGoogle Scholar
  29. 29.
    White, D.Wallwork, J. Xenografting: probability, possibility, or pipe dream? Lancet 342, 879, 1993PubMedCrossRefGoogle Scholar
  30. 30.
    Fodor, W.L., Williams, B.L., Matis, L.A., et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc.Natl.Acad.Sci.USA 91, 11153, 1994PubMedCrossRefGoogle Scholar
  31. 31.
    Piatt, J.L.Logan, J.S. Use of transgenic animals in xenotransplantation. Transplantation Reviews 10, 69, 1996CrossRefGoogle Scholar
  32. 32.
    McCurry, K.R., Kooyman, D.L., Alvarado, CG., et al. Human complement regulatory proteins protect swine-to-primate cadriac xenografts from humoral injury. Nature Med 1, 423, 1995PubMedCrossRefGoogle Scholar
  33. 33.
    Byrne, G.W., McCurry, K.R., Martin, M.J., et al. Expression of human CD59 and DAF in transgenic pigs: intrinsic regulation of complement activity. Transplantation, In PressGoogle Scholar
  34. 34.
    Inverardi, L., Samaja, M., Motterlini, R., et al. Early recognition of a discordant xenogeneic organ by human circulating lymphocytes. J.Immunol. 149, 1416, 1992PubMedGoogle Scholar
  35. 35.
    Piatt, J.L. Hyperacute Xenograft Rejection. R.G. Landes Company, Austin, 1995,Google Scholar
  36. 36.
    Saadi, S., Ihrcke, N.S. and Piatt, J.L. Pathophysiology of xenograft rejection. In Lieber-man, R., Morris, R. (eds.) Principles of Immunomodulatory Drug Development in Transplantation and Autoimmunity. Raven Press, New York, NY, 1995.Google Scholar
  37. 37.
    Brauer, R.B., Baldwin III, W.M., Daha, M.R., Pruitt, S.K.Sanfilippo, F. Use of C6-deficient rats to evaluate the mechanism of hyperacute rejection of discordant cardiac xenografts. J.Immunol. 151, 7240, 1993PubMedGoogle Scholar
  38. 38.
    Ihrcke, N.S., Wrenshall, L.E., Lindman, B.J.Platt, J.L. Role of heparan sulfate in immune system-blood vessel interactions. Immunol.Today 14, 500, 1993PubMedCrossRefGoogle Scholar
  39. 39.
    Ihrcke, N.S.Piatt, J.L. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell surface molecules, J. Cell Physiol 168, 625,1996PubMedCrossRefGoogle Scholar
  40. 40.
    Stevens, R.B., Wang, Y.L., Kaji, H., et al. Administration of nonanticoagulant heparin inhibits the loss of glycosaminoglycans from xenogeneic cardiac grafts and prolongs graft survival. Transplant. Proc. 25, 382, 1993PubMedGoogle Scholar
  41. 41.
    Saadi, S.Piatt, J.L. Transient perturbation of endothelial integrity induced by antibodies and complement. J.Exp.Med. 181, 21, 1995PubMedCrossRefGoogle Scholar
  42. 42.
    Hattori, R., Hamilton, K.K., Fugate, R.D., McEver, R.P.Sims, RJ. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J.Biol.Chem. 264, 7768, 1989PubMedGoogle Scholar
  43. 43.
    Hattori, R., Hamilton, K.K., McEver, R.P.Sims, RJ. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J.Biol.Chem. 264, 9053, 1989.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. L. Platt

There are no affiliations available

Personalised recommendations