Immunoprivileged Sites for Allo-and Xenotransplantation

  • J. H. Dinsmore


The existence of sites in the body in which allogeneic or xenogeneic transplants survive for extended periods (sometimes indefinitely) have been recognized for many years and have been designated “immunologically privileged sites.” A list of privileged sites include the brain, the eye (anterior chamber and cornea), certain endocrine organs (prostate, adrenal cortex, testis, ovary) [1], the pregnant uterus [2], the thymus [3], hair follicles, and the hamster cheek pouch [1]. In particular, the brain, anterior chamber of the eye, and testis have been shown to provide a protective environment against immune attack for cells transplanted to these sites.


Anterior Chamber Lymphatic Drainage FasL Expression Cheek Pouch Immune Privilege 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, C.F., Billingham, R.E. (1977). Immunologically privileged sites. Advances in Immunology 25: 1PubMedCrossRefGoogle Scholar
  2. 2.
    Streilein, J.W., Wegman, T.G. (1987). Immunologic privilege in the eye and the fetus. Immunol. Today 8: 362CrossRefGoogle Scholar
  3. 3.
    Posselt, A.M., Barker, C.F., Tomaszewski, J.E., et al. (1990). Induction of donor-specific unresponsiveness by intrathymic islet transplantation. Science 249: 1293PubMedCrossRefGoogle Scholar
  4. 4.
    Bellgrau, D., Gold, D., Selawry, H., et al. (1995). A role for CD95 ligand in preventing graft rejection. Nature 377: 630PubMedCrossRefGoogle Scholar
  5. 5.
    Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R., Ferguson, T.A. (1995). Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270: 1189PubMedCrossRefGoogle Scholar
  6. 6.
    Bergstresser, P.R., Fletcher, C.R., Streilein, J.W. (1980). Surface densities of Langerhans cells in relation to rodent epidermal sites with special immunologic properties. J. Invest. Dermatol. 74: 77PubMedCrossRefGoogle Scholar
  7. 7.
    Levine, S. (1968). Local and regional forms of graft-versus-host disease in lymph nodes. Transplantation 6: 799PubMedCrossRefGoogle Scholar
  8. 8.
    Head, J.R., Billingham, R.E. (1985). Immunologically privileged sites in transplantation immunology and oncology. Perspectives in Biology & Medicine 29: 115Google Scholar
  9. 9.
    Neaves, W.B., Billingham, R.E. (1979). The lymphatic drainage of the rat prostate and its status as an immunologically privileged site. Transplantation 27: 127PubMedCrossRefGoogle Scholar
  10. 10.
    Shridhar, P. (1979). The lymphatics of the prostate gland and their role in the spread of prostatic carcinoma. Ann R Coll Surg Engl 61: 114PubMedGoogle Scholar
  11. 11.
    Whitmore, W.F., Gittes, R.F. (1978). Intratesticular grafts: the testis as an exceptional immunologically privileged site. Trans Am Assoc GU Surg 70: 76–80Google Scholar
  12. 12.
    Kukreja, S.C., Johnson, P.A., Ayala, G., Bowser, E.N., Williams, G.A. (1979). Allotransplantation of rat parathyroid glands: effects of organ culture and transplantation into the adrenal gland. Experientia 35: 559PubMedCrossRefGoogle Scholar
  13. 13.
    Compton, M.M., Caron, L.M., Cidlowski, J.A. (1987). Glucocorticoid action on the immune system. J. Steroid Biochem 27: 201PubMedCrossRefGoogle Scholar
  14. 14.
    Sakonju, I., Taura, Y., Nakaichi, M., Nakama, S., Kagabu, S. (1994). Intrauterine transplantation of isogenic pancreatic islets in experimental diabetic rats. J Vet Med Sci 56: 729PubMedCrossRefGoogle Scholar
  15. 15.
    Wilbanks, G.A., Streilein, J.W. (1992). Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta. Eur J Immunol 22: 1031PubMedCrossRefGoogle Scholar
  16. 16.
    Posselt, A.M., Naji, A., Roark, J.H., Markmann, J.F., Barker, C.F. (1991). Intrathymic islet transplantation in the spontaneously diabetic BB rat. Ann Surg 214: 363; discussion 371PubMedCrossRefGoogle Scholar
  17. 17.
    Tze, W.J., Tai, J. (1984). Intracerebral allotransplantation of purified pancreatic endocrine cells and pancreatic islets in diabetic rats. Transplantation 38: 107PubMedCrossRefGoogle Scholar
  18. 18.
    Widner, H., Brundin, P. (1988). Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis. Brain Res 472: 287PubMedGoogle Scholar
  19. 19.
    Bjorklund, A. (1991). Neural transplantation-an experimental tool with clinical possibilities. Trends in Neurosciences 14: 319PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, H.C., Ahn, K.J., Lim, S.K. et al. (1992). Allotransplantation of rat islets into the cisterna magna of streptozotocin-induced diabetic rats. Transplantation 53: 513PubMedCrossRefGoogle Scholar
  21. 21.
    Deacon, T.W., Pakzaban, P., Burns, L.H., Dinsmore, J., Isacson, O. (1994). Cytoarchitec-tonic development, axon-glia relationships, and long distance axon growth of porcine striatal xenografts in rats. Exp. Neurol. 130: 151PubMedCrossRefGoogle Scholar
  22. 22.
    Pakzaban, P., Isacson, O. (1994). Neural xenotransplantation: reconstruction of neuronal circuitry across species barriers. Neuroscience 62: 989PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia, A.R., Deacon, T.W., Dinsmore, J., Isacson, O. (1995). Extensive axonal and glial fiber growth from fetal porcine cortical xenografts in the adult rat cortex. Cell Transplantation 4: 515PubMedCrossRefGoogle Scholar
  24. 24.
    Isacson, O., Deacon, T.W., Pakzaban, P., et al. (1995). Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nature Med 1: 1189PubMedCrossRefGoogle Scholar
  25. 25.
    Pakzaban, P., Deacon, T.W., Burns,, L.W., Dinsmore, J., Isacson, O. (1995). A novel mode of immunoprotection of neural xenotransplants: masking of donor major histocompatibility complex class I enhances transplant survival in the central nervous system [published erratum appears in Neuroscience 1995;66:761]. Neuroscience 65: 983PubMedCrossRefGoogle Scholar
  26. 26.
    Sloan, D.J., Wood, M.J., Charlton, H.M. (1991). The immune response to intracerebral neural grafts. Trends in Neurosciences 14: 341PubMedCrossRefGoogle Scholar
  27. 27.
    Cserr, H.F., Knopf, P.M. (1992). Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13: 507PubMedCrossRefGoogle Scholar
  28. 28.
    Young, M.J., Rao, K., Lund, R.D. (1989). Integrity of the blood-brain barrier in retinal xenografts is correlated with the immunological status of the host. J Comp Neurol 283: 107PubMedCrossRefGoogle Scholar
  29. 29.
    Broadwell, R.D., Charlton, H.M., Ebert, P., et al. (1990). Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS. Prog. Brain Res. 82: 95PubMedCrossRefGoogle Scholar
  30. 30.
    Pollack, I.F., Lund, R.D. (1990). The blood-brain barrier protects foreign antigens in the brain from immune attack. Exp Neurol 108: 114PubMedCrossRefGoogle Scholar
  31. 31.
    Bertram, K.J., Shipley, M.T., Ennis, M., Sanberg, P.R., Norman, A.B. (1994). Permeability of the blood-brain barrier within rat intrastriatal transplants assessed by simultaneous systemic injection of horseradish peroxidase and Evans blue dye. Exp. Neurol. 127: 245PubMedCrossRefGoogle Scholar
  32. 32.
    Tze, W.J., Tai, J. (1988). Allotransplantation of dispersed single pancreatic endocrine cells in diabetic rats. Diabetes 37: 383PubMedCrossRefGoogle Scholar
  33. 33.
    Ortega, J.D., Sagen, J., Pappas, G.D. (1992). Short-term immunosuppression enhances long-term survival of bovine chromaffin cell xenografts in rat CNS. Cell Transplantation 1: 33PubMedGoogle Scholar
  34. 34.
    Giest, M.J., Maris, D.O., Grady, M.S. (1991). Blood-brain barrier permiability is not altered by allograft or xenograft fetal neural cell suspension grafts. Exp. Neurol. 111: 166CrossRefGoogle Scholar
  35. 35.
    Hickey, W.F., Hsu, B., Kimura, H. (1991). T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28: 254PubMedCrossRefGoogle Scholar
  36. 36.
    Mason, D.W., Charlton, H.M., Jones, A.J., et al. (1986). The fate of allogeneic and xenogeneic neuronal tissue transplanted into the third ventricle of rodents. Neuroscience 19: 685PubMedCrossRefGoogle Scholar
  37. 37.
    Sloan, D.J., Baker, B.J., Puklavec, M., Charlton, H.M. (1990). The effect of site of transplantation and histocompatibility differences on the survival of neural tissue transplanted to the CNS of defined rat strains. Prog. Brain Res. 82: 141PubMedCrossRefGoogle Scholar
  38. 38.
    Broadwell, R.D., Charlton, H.M., Balin, B.J., Salcman, M. (1987). Angioarchitecture of the CNS, pituitary gland, and intracerebral grafts revealed with peroxidase cytochemistry. J. Comp. Neurol. 260: 47PubMedCrossRefGoogle Scholar
  39. 39.
    Lindvall, O., Widner, H., Rehncrona, S., et al. (1992). Transplantation of fetal dopamine neurons in Parkinson’s disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. Ann Neurol 31: 155PubMedCrossRefGoogle Scholar
  40. 40.
    Selawry, H.P., Whittington, K.B., Forster, H.G. (1988). Intratesticular islet xenograft survival in relation to tissue cyclosporine levels. Am J Med Sci 295: 497PubMedCrossRefGoogle Scholar
  41. 41.
    Ar’Rajab, A., Dawidson, I.J., Harris, R.B., Sentementes, J.T. (1994). Immune privilege of the testis for islet xenotransplantation (rat to mouse). Cell Transplantation 3: 493PubMedGoogle Scholar
  42. 42.
    Streilein, J.W. (1995). Unraveling immune privilege. Science 270: 1158PubMedCrossRefGoogle Scholar
  43. 43.
    Nagata, S., Golstein, P. (1995). The Fas death factor. Science 267: 1449PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. H. Dinsmore

There are no affiliations available

Personalised recommendations