Hemostasis in Xenotransplantation

  • B. J. Hunt
  • K. M. Jurd


The recent revival of interest in xenotransplantation across discordant species focused initially on immunological aspects of hyperacute rejection. More latterly, research has explored the effects of antibody and complement binding to the endothelial cell. However the ultimate end-point of hyperacute rejection (the xenograft reaction) can be considered to be microvascular thrombosis. Thus hemostasis, the complex system which maintains the fluidity of blood within a vessel, but forms a clot once the vessel wall is breached, is an obligatory component of the xenograft reaction. This chapter will cover a basic understanding of hemostasis and then discuss the relative importance of hemostatic activation in the pig-to-human xenograft reaction.


Tissue Factor Heparan Sulphate Tissue Factor Pathway Inhibitor Endothelial Cell Activation Porcine Aortic Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Girma J P, Meyer D, Verweij D L, Pannekoek J, Sixma J J. Structure-function relationship of human von Willebrand factor. Blood. 70, 605, 1986Google Scholar
  2. 2.
    Sakariassen K S, Nievelstein P F E M, Coller B S, Sixma J J. The role of platelet membrane glycoprotein Ib and IIb-IIIa in platelet adherence to human artery subendothe-lium. Br. J. Hematol. 63, 681, 1986CrossRefGoogle Scholar
  3. 3.
    Holmsen H, Day H J, Stormorken H. The blood platelet release reaction. Scand. J. Hematol. Suppl. 8, 1, 1969Google Scholar
  4. 4.
    Niiya K, Hodson E, Bader R. Increased surface expression of the membrane glycoprotein Ilb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood. 70, 475, 1987PubMedGoogle Scholar
  5. 5.
    Harmon J T, Jamieson G A. Activation of platelets by alpha-thrombin is a receptor-mediated event. J. Biol. Chem. 261, 15928, 1986PubMedGoogle Scholar
  6. 6.
    Davie E W, Ratnoff O D. Waterfall sequence for intrinsic blood clotting. Science. 145, 1310, 1964PubMedCrossRefGoogle Scholar
  7. 7.
    McFarlane R G. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature. 202, 498, 1964CrossRefGoogle Scholar
  8. 8.
    Bauer K A, Kass B L, Cate H T, Hawiger J J, Rosenberg R D. Factor IX is activated in vivo by the tissue factor mechanism. Blood. 76; 731, 1990PubMedGoogle Scholar
  9. 9.
    Edgington T S, Mackman N, Brand K, Ruf W. The structural biology and expression of tissue factor. Thromb. Hemostas. 66, 67, 1991Google Scholar
  10. 10.
    Davie E W, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance and regulation. Biochemistry. 30, 10363, 1991PubMedCrossRefGoogle Scholar
  11. 11.
    Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J. Biol. Chem. 266, 7353, 1991PubMedGoogle Scholar
  12. 12.
    Mann K G, Neshiem M E, Church W R, Haley P, Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 76, 1, 1990PubMedGoogle Scholar
  13. 13.
    Esmon C T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol. Chem. 264, 4743, 1989PubMedGoogle Scholar
  14. 14.
    Marcum J A, McKenney J B, Rosenberg R D. Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparin-like molecules bound to the endothelium. J. Clin. Invest. 74, 341, 1984PubMedCrossRefGoogle Scholar
  15. 15.
    Rapaport S I. The extrinsic pathway inhibitor: a regulator of tissue factor-dependent blood coagulation. Thromb. Hemostas. 66, 6, 1991Google Scholar
  16. 16.
    Suzuki K, Stenflo J Dahlback B, Teodorsson B. Inactivation of human coagulation factor V by activated protein C. J. Biol. Chem. 258, 1914, 1983PubMedGoogle Scholar
  17. 17.
    Fulcher C A, Gardiner J E, Griffin J H, Zimmerman T S. Proteolytic inactivation of human factor VIII procoagulant protein by activated protein C and its analogy with factor V. Blood. 63, 486, 1984PubMedGoogle Scholar
  18. 18.
    Esmon C T, Owen W G. Identification of an endothelial cell cofactor for the thrombin-catalyzed activation of protein C. Proc. Natl Acad., Sci. 78, 2249, 1981CrossRefGoogle Scholar
  19. 19.
    Esmon C T, Esmon N L, Harris K W. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol. Chem. 257, 7944, 1982PubMedGoogle Scholar
  20. 20.
    Esmon N L, Carroll R C, Esmon C T. Thrombomodulin blocks the ability of thrombin to activate platelets. J. Biol. Chem. 258, 12268, 1983Google Scholar
  21. 21.
    Bauer K A, Rosenberg R D. Role of antithrombin III as a regulator of in vivo coagulation. Seminars in Hematol. 28, 10, 1991Google Scholar
  22. 22.
    Rosenberg R D, Damus P S. The purification and mechanism of action of human antithrombin-heparin cofactor. J. Biol. Chem. 248, 6490, 1973PubMedGoogle Scholar
  23. 23.
    Holyaerts M, Rijken D C, Lijner H R, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. J. Biol. Chem. 257, 2912, 1982Google Scholar
  24. 24.
    Collen D. On the regulation and control of fibrinolysis. Thromb. Hemostas. 43; 77, 1980Google Scholar
  25. 25.
    Moncada S. Biological importance of prostacyclin. Br. J. Pharmacol. 76, 3, 1982PubMedGoogle Scholar
  26. 26.
    Radomski M W, Palmer R M J, Moncada S. The anti-aggregating properties of vascular endothelium: interaction of prostacyclin and nitric oxide. Br. J. Pharmacol. 92, 639, 1987PubMedGoogle Scholar
  27. 27.
    Levin E G, Marzec U, Anderson J, Harker L A. Thrombin stimulates tissue plasminogen activator release from cultured endothelial cells. J. Clin. Invest. 74, 1988, 1984Google Scholar
  28. 28.
    Heimark R L, Schwartz S M. Binding of coagulation factors IX and X to the endothelial cell surface. Biochem. Biophys. Res. Commun. 111, 723, 1983PubMedCrossRefGoogle Scholar
  29. 29.
    Cerveny T J, Fass D N, Mann K G. Synthesis of coagulation factor V by cultured aortic endothelium. Blood. 63, 1467, 1984PubMedGoogle Scholar
  30. 30.
    Nesheim M E, Mann K G. Thrombin-catalyzed activation of single chain bovine factor V. J. Biol. Chem. 254, 1326, 1979PubMedGoogle Scholar
  31. 31.
    Mann K G, Jenny R J, Krishnaswamy S. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Ann. Rev. Biochem. 57, 915, 1988PubMedCrossRefGoogle Scholar
  32. 32.
    Janus T J, Lewis S D, Lorand L, Shafer, J A. Promotion of thrombin-catalyzed activation of factor XIII by fibrinogen. Biochem. 22, 6269, 1983CrossRefGoogle Scholar
  33. 33.
    Drake T A, Morissey J H, Edgington T S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am. J. Pathol. 134, 1087, 1989PubMedGoogle Scholar
  34. 34.
    Altieri D C, Morrissey J H, Edgington T S. Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells of monocytic and myeloid differentiation: an alternative initiation of the coagulation protease cascade. Proc. Natl. Acad. Sci. USA. 85, 7462, 1988PubMedCrossRefGoogle Scholar
  35. 35.
    Gordon S G, Cross B A. A factor X activating cysteine protease from malignant tissue. J. Clin. Invest. 67, 1665, 1981PubMedCrossRefGoogle Scholar
  36. 36.
    Khin-Ei-Han, Hutton R A. In vitro studies of Russell’s viper venom on blood coagulation and fibrinolysis. Thrombosis Res. 46, 363, 1987CrossRefGoogle Scholar
  37. 37.
    Nakagaki T, Lin P, Kisiel W. Activation of human factor VII by the prothrombin activator from the venom of Oxyuranus scutellatus (Taipan snake). Thrombosis Res. 65, 105, 1992CrossRefGoogle Scholar
  38. 38.
    Kisiel W, Choi E, Kondo S. Isolation of protein C activator from Southern copperhead venom. Biochem. Biophys. Res. Commun. 143, 917, 1987PubMedCrossRefGoogle Scholar
  39. 39.
    Rosing J, Tans G. Inventory of exogenous prothrombin activators. Thrombosis Hem. 65, 627, 1991Google Scholar
  40. 40.
    Kornalik F Blomback B. Prothrombin activation induced by Ecarin - a prothrombin converting enzyme from Echis carinatus venom. Thromb. Res. 6, 57, 1975PubMedCrossRefGoogle Scholar
  41. 41.
    Hendrix H., Lindhout T., Mertens K., Engels W., Hemker H. C. Activation of human prothrombin by stoichiometric levels of staphylocoagulase. J. Biol. Chem. 258, 3637, 1983PubMedGoogle Scholar
  42. 42.
    Cooper D K C, Ye Y, Rolf L L Jr, Zuhdi N. The pig as potential organ donor for man. In: Xenotransplantation (First edition). Cooper D K C, et al. (eds). Springer, Heidelberg, 1991, p. 481Google Scholar
  43. 43.
    Polley M J, Nachman R L. Human complement in thrombin-mediated platelet function. Uptake of the C5b-C9 complex. J Exp. Med. 150, 633, 1979PubMedCrossRefGoogle Scholar
  44. 44.
    Weidmer T, Esmon C T, Sims P J. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood. 68, 875, 1986Google Scholar
  45. 45.
    Hamilton K K, Hattori R, Esmon C T, Sims P J. Complement proteins C5D-C9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J. Biol. Chem. 265, 3809, 1990PubMedGoogle Scholar
  46. 46.
    Platt J L, Vercellotti G M, Lindman G J, et al. Release of heparan sulphate from endothelial cells. J. Exp. Med. 171, 1363, 1990PubMedCrossRefGoogle Scholar
  47. 47.
    Jurd K M, Lee J, Cairns T, Hunt B J. Effect of Galα1,3Galß1,4GlcNAc and complement depeletion on hemostatic activation in an in vitro model of the pig to human xenograft reaction. Transplant. Proc. (in press)Google Scholar
  48. 48.
    Robson S C, Siegel J B, Kopp C, et al. Mechanism of abnormal thromboregulation in xenograft rejection: loss of ecto-ADPase activity upon endothelial cell activation. Transplant. Proc. (in press)Google Scholar
  49. 49.
    Hunt B J, Duning J J, Segal H, et al. Pig-to-human xenograft reaction: is hemostatic activation dependent on the presence of anti-pig antibodies or complement? Transplant. Proc. 26, 1156, 1994PubMedGoogle Scholar
  50. 50.
    Makowka L, Cramer D V, Hoffman A, Sher L, Podesta L. Pig liver xenografts as a temporary bridge for human allografting. Xeno. 1, 17, 1993Google Scholar
  51. 51.
    Michler R E, Xu H, O’Hair D P, et al. Newborn discordant cardiac xenotransplantation: potential application to human. Transplant. Proc. (in press)Google Scholar
  52. 52.
    Pareti F I, Mazzucato M, Bottini E, Mannucci P M. Interaction of porcine von Willeb-rand factor with the platelet glycoproteins Ib and IIb/IIIa complex. Br. J. Haematol. 82, 81, 1992PubMedCrossRefGoogle Scholar
  53. 53.
    Forbes C D, Prentice C R M. Aggregation of human platelets by purified porcine and bovine antihemophilic factor. Nature: New Biology. 241, 149, 1973CrossRefGoogle Scholar
  54. 54.
    Kopp C W, Robson S C, Hancock W W, Bach F H, Geczy C. Porcine endothelial tissue factor pathway inhibitor antagonises human tissue factor but not factor Xa. Transplant. Proc. (in press)Google Scholar
  55. 55.
    Reverdiau-Moalic P, Watier H, Vallée I, et al. Comparative study of porcine and human blood coagulation systems: possible relevance in xenotransplantation. Transplant. Proc. (in press)Google Scholar
  56. 56.
    Janson T L, Stormorken H, Prydz H. Species specificity of tissue thromboplastin. Hemostasis. 14, 440, 1984Google Scholar
  57. 57.
    Jurd K M, Cairns T, Hunt B J. Activation of hemostasis in an in vitro model of the pig-to-human xenograft reaction. Transplant. Proc. 26,1159, 1994PubMedGoogle Scholar
  58. 58.
    Jurd K M, Gibbs R V, Hunt B J. Activation of human prothrombin by porcine aortic endothelial cells - a potential barrier to xenotransplantation. Blood Coagulation Fibri-nol, 7, 336, 1996CrossRefGoogle Scholar
  59. 59.
    Stone S R, Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 25, 4622, 1986PubMedCrossRefGoogle Scholar
  60. 60.
    Hironaka T, Furukawa K, Esmon C T, et al. Structural study of the sugar chains of porcine factor VIII — tissue and species-specific glycosylation of factor VIII. Arch. Biochem. Biophys. 307, 316, 1993Google Scholar
  61. 61.
    Townsend R R J. Biol. Chem. 257, 9704, 1982Google Scholar
  62. 62.
    Thall A, Galili U. Distribution of Galα1,3Galß1,4GlcNAc residues on secreted mammalian glycoproteins (thyroglobulin, fibrinogen, and immunoglobulin G) as measured by a sensitive solid-phase radioimmunoassay. Biochemistry. 29, 3959, 1990PubMedCrossRefGoogle Scholar
  63. 63.
    Blanchard D, Thibaudeau K, Soulillou J P. Porcine antigenic targets for human natural antibodies. Xeno. 3, 68, 1995Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • B. J. Hunt
  • K. M. Jurd

There are no affiliations available

Personalised recommendations