Upwind and High-Resolution Schemes pp 134-148 | Cite as

# Convergence of Generalized Muscl Schemes

Chapter

## Abstract

Semidiscrete generalizations of the second order extension of Godunov’s scheme, known as the MUSCL scheme, are constructed, starting with any three point “*E*” scheme. They are used to approximate scalar conservation laws in one space dimension. For convex conservation laws, each member of a wide class is proven to be a convergent approximation to the correct physical solution. Comparison with another class of high resolution convergent schemes is made.

### Keywords

Entropy## Preview

Unable to display preview. Download preview PDF.

### References

- [1]S. R. Chakravarthy and S. Osher,
*High resolution applications of the Osher upwind scheme for the Euler equations*, Proc. AIAA Computational Fluid Dynamics Conference, Danvers, MA, 1983, pp. 363–372.Google Scholar - [2]P. Colella,
*A direct Eulerian*MUSCL*scheme for gas dynamics*, Lawrence Berkeley Lab. Report #LBL-14104, 1982.Google Scholar - [3]R. J. Diperna,
*Convergence of approximate solutions to conservation laws*, Arch. Rational Mech. Anal., 82 (1983), pp. 27–70.MathSciNetADSMATHCrossRefGoogle Scholar - [4]B. Engquist, and S. Osher,
*Stable and entropy condition satisfying approximations for transonic flow calculations*, Math. Comp., 34 (1980), pp. 45–75.MathSciNetMATHCrossRefGoogle Scholar - [5]S. K. Godunov,
*A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics*, Mat. Sb., 47 (1959), pp. 271 – 290.MathSciNetGoogle Scholar - [6]B. Gustafsson,
*The convergence rate for difference approximations to mixed initial boundary value problems*, Math. Comp., 29 (1975), pp. 396 – 406.MathSciNetMATHCrossRefGoogle Scholar - [7]A. Harten
*High resolution schemes for hyperbolic conservation laws*, J. Comp. Phys., 49 (1983), pp. 357–393.MathSciNetADSMATHCrossRefGoogle Scholar - [8]A. Harten,
*On second order accurate Godunov-type schemes*NASA AMES Report # NCA2-ORS25-201.Google Scholar - [9]S. N. Kruzkov,
*First order quasi-linear equations in several independent variables*Math. USSR Sb., 10 (1970), pp. 217–243.CrossRefGoogle Scholar - [10]W. A. Mulder and B. Van Leer
*Implicit upwind computations for the Euler equations*, AIAA Computational Fluid Dynamics Conference, Danvers, MA, 1983, pp. 303–310.Google Scholar - [11]S. Osher,
*Riemann solvers, the entropy condition, and difference approximations*, this Journal, 21 (1984), pp. 217 – 235.MathSciNetMATHGoogle Scholar - [12]S. Osher and S. R. Chakravarthy
*High resolution schemes and the entropy condition*, this Journal, 21 (1984), pp. 955 – 984.MathSciNetMATHGoogle Scholar - [13]P. K. Sweby
*High resolution schemes using flux limiters for hyperbolic conservation laws*, this Journal, 21 (1984), pp. 995–1011.MathSciNetMATHGoogle Scholar - [14]P. K. Sweby and M. J. Baines
*Convergence of Roe’s scheme for the general non-linear scalar wave equation*Numerical Analysis Report, 8/81, Univ. Reading, 1981.Google Scholar - E. Tadmor
*Numerical viscosity and the entropy condition for conservative difference schemes*ICASE NASA Contractor Report 172141, (1983), NASA Langley Research Center, Hampton, VA.Google Scholar - [16]B. van Leer
*Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second order scheme*, J. Comp. Phys.,14 (1974), pp.361–376.ADSCrossRefGoogle Scholar - [17]B. van Leer,
*Towards the ultimate conservative difference scheme*. V. A. second-order sequel to Godunov’s method, J. Comp. Phys., 32 (1979), pp. 101–136.ADSCrossRefGoogle Scholar - [18]H. C. Yee, R. F. Warming and A. Harten
*Implicit total variation diminishing (TVD) schemes for steady state calculations*, Proc. AIAA Computational Fluid Dynamics Conference, Danvers, MA, 1983, pp. 110–127.Google Scholar - [19]R. Sanders On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp.,40 (1983), pp. 91–106.MathSciNetMATHCrossRefGoogle Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 1997