Skip to main content

Toric Laminations, Sparse Generalized Characteristic Polynomials, and a Refinement of Hubert’s Tenth Problem

  • Conference paper
Foundations of Computational Mathematics

Abstract

This paper reexamines univariate reduction from a toric geometric point of view. We begin by constructing a binomial variant of the u-resultant and then retailor the generalized characteristic polynomial to sparse polynomial systems. We thus obtain a fast new algorithm for univariate reduction and a better understanding of the underlying projections. As a corollary, we show that a refinement of Hilbert’s Tenth Problem is decidable in single-exponential time. We also obtain interesting new algebraic identities for the sparse resultant and certain multisymmetric functions.

This research was completed at City University of Hong Kong and was funded by an N.S.F. Mathematical Sciences Postdoctoral Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, S., Pollack, R., and Roy, M.F., “On the Combinatorial and Algebraic Complexity of Quantifier Elimination”, In Proc. IEEE Symp. Foundations of Comp. Sci., Santa Fe, New Mexico, 1994, to appear.

    Google Scholar 

  2. Canny, John F., “Generalised Characteristic Polynomials”, J. Symbolic Computation (1990) 9, pp. 241 – 250.

    Article  MATH  Google Scholar 

  3. Cornell, Gary and Silverman, Joseph H.,Arithmetic Geometry", with contributions by M. Artin, et. al., Springer-Verlag, 1986.

    Google Scholar 

  4. Danilov, V. I., “The Geometry of Toric Varieties,” Russian Mathematical Surveys, 33 (2), pp. 97 – 154, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dyer, M., Gritzmann, P., and Hufnagel, A., “On the Complexity of Computing Mixed Volumes,” SIAM J. Comput., to appear (1996).

    Google Scholar 

  6. Dalbec, John, and Sturmfels, Bernd, Bernd, “Introduction to Chow Forms,” Invariant Methods in Discrete and Computational Geometry (Curaçao, 1994), pp. 37–58, Kluwer Academic Publishers, Dordrecht, 1995.

    Google Scholar 

  7. Emiris, Ioannis Z. and Canny, John F., “Efficient Incremental Algorithms for the Sparse Resultant and the Mixed Volume” Journal of Symbolic Computation, vol. 20 (1995), pp. 117 – 149.

    MathSciNet  MATH  Google Scholar 

  8. Emiris, Ioannis Z., “Sparse Elimination and Applications in Kinematics,” Ph.D. dissertation, Computer Science Division, U. C. Berkeley (December, 1994), available on-line at http://www. inria. fr/safir/SAFIR/Ioannis. html.

    Google Scholar 

  9. Emiris, Ioannis Z., “On the Complexity of Sparse Elimination,” manuscript, INRIA, March 1996, available online at http://www. inria. fr/safir/SAFIR/Ioannis. html.

    Google Scholar 

  10. Fulton, William,Introduction to Toric Varieties, Annals of Mathematics Studies, no. 131, Princeton University Press, Princeton, New Jersey, 1993.

    Google Scholar 

  11. Giusti, M., Heintz, J., Morais, J. E., Pardo, L. M.,When Polynomial Systems Can Be “Solved” Fast?, Proc. 11thInternational Symposium, AAECC-11, Paris, France, July 17–22, 1995, G. Cohen, M. Giusti and T. Mora, eds., Springer LNCS 948 (1995) pp. 205–231.

    Google Scholar 

  12. Gel’fand, I. M., Kapranov, M. M., and Zelevinsky, A. V., “Discriminants of Polynomials in Several Variables and Triangulations of Newton Polytopes” Algebra and Analysis (translated from Russian) 2, pp. 1 – 62, 1990.

    Google Scholar 

  13. Gel’fand, I. M., Kapranov, M. M., and Zelevinsky, A. V.,Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.

    Google Scholar 

  14. Gonzalez, L., Lombardi, H, Recio, T., Roy, M.F., “Sturm-Habicht Sequence, Determinants and Real Roots of Univariate Polynomials,” Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, B. Caviness and J. Johnson, Eds., Springer-Verlag, Wien, New York, 1994, to appear.

    Google Scholar 

  15. Huber, Birkett and Sturmfels, Bernd, Bernd, “Bemshtein’s Theorem in Affine Space” Discrete and Computational Geometry, to appear, 1996.

    Google Scholar 

  16. Khovanskii, A. G., “Newton Polyhedra and Toroidal Varieties,” Functional Anal. Appl., 11 (1977), pp. 289 – 296.

    Article  Google Scholar 

  17. Khovanskii, A. G., “Newton Polyhedra and the Genus of Complete Intersections,” Functional Analysis (translated from Russian), Vol. 12, No. 1, January-March (1978), pp. 51 – 61.

    MathSciNet  Google Scholar 

  18. Kapur, Deepak and Lakshman, Yagati N., “Elimination Methods: an Introduction,” Symbolic and Numerical Computation for Artificial Intelligence, B. Donald et. al. (eds. ), Academic Press, 1992.

    Google Scholar 

  19. Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.,Toroidal Embed-dings I, Lecture Notes in Mathematics 339, Springer-Verlag, 1973.

    Google Scholar 

  20. Kapranov, M. M., Sturmfels, B., and Zelevinsky, A. V., “Chow Polytopes and General Resultants,” Duke Mathematical Journal, V. l. 67, No. 1, July, 1992, pp. 189 – 218.

    Google Scholar 

  21. Kushnirenko, A. G., “A Newton Polytope and the Number of Solutions of a System of k Equations in k Unknowns,” Usp. Matem. Nauk., 30, No. 2, pp. 266 – 267 (1975).

    Google Scholar 

  22. Lazard, D. “Résolution des Systèmes d’équations Algébriques,” Theor. Comp. Sci. 15, pp. 146–156.

    MathSciNet  Google Scholar 

  23. Lenstra, A. K., Lenstra, H. W., and Lovász, L. “Factoring Polynomials with Rational Coefficients,” Math. Ann. 261 (1982), pp. 515 – 534.

    Article  MathSciNet  MATH  Google Scholar 

  24. Matiyasevich, Yuri V.Hilbert’s Tenth Problem, MIT Press, MIT, Cambridge, Massachusetts, 1993.

    Google Scholar 

  25. Sturmfels, Bernd, Math 250B (Commutative Algebra), graduate course, U. C. Berkeley, fall 1995, homework #2, problem #3.

    Google Scholar 

  26. Par do-Vasallo, Luis-Miguel and Krick, Teresa, “A Computational Method for Diophantine Approximation,” to appear in Proc. MEGA’94, Birkhäuser, Progress in Math. (1995).

    Google Scholar 

  27. Pedersen, P. and Sturmfels, B., “Product Formulas for Sparse Resultants and Chow Forms,” Mathematische Zeitschrift, 214: 377 – 396, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  28. Renegar, Jim, “On the Worst Case Arithmetic Complexity of Approximating Zeros of Systems of Polynomials,” Technical Report, School of Operations Research and Industrial Engineering, Cornell University.

    Google Scholar 

  29. Rojas, J. Maurice, “A Convex Geometric Approach to Counting the Roots of a Polynomial System,” Theoretical Computer Science (1994), vol. 133 (1), pp. 105–140.

    Article  MathSciNet  Google Scholar 

  30. Rojas, J. Maurice “Toric Intersection Theory for Affine Root Counting,” submitted to the Journal of Pure and Applied Algebra, also available on-line at http://www-math. mit. edu/~rojas.

    Google Scholar 

  31. Rojas, J. Maurice “When do Resultants Really Vanish?,” manuscript, MIT.

    Google Scholar 

  32. Rojas, J. Maurice “Affine Elimination Theory and Solving Certain Diophantine Systems Quickly,” manuscript, MIT.

    Google Scholar 

  33. Roy, Marie-Prangoise “Basic Algorithms in Real Algebraic Geometry and their Complexity: from Sturm Theorem to the Existential Theory of Reals,” manuscript, IRMAR, Rennes, Prance, 1995.

    Google Scholar 

  34. Rojas, J. M., and Wang, Xiaoshen, “Counting Affine Roots of Polynomial Systems Via Pointed Newton Polytopes,” Journal of Complexity, vol. 12, June (1996), pp. 116–133, also available on-line at http://www-math. mit. edu/~rojas.

    Google Scholar 

  35. Shub, Mike, Mike, "Some Remarks on Bézout’s Theorem and Complexity Theory, Prom Topology to Computation: Proceedings of the Smalefest, pp. 443–455, Springer-Verlag, 1993.

    Google Scholar 

  36. Sturmfels, Bernd, “Sparse Elimination Theory,” In D. Eisenbud and L. Rob-biano, editors, Proc. Computat. Algebraic Geom. and Commut. Algebra 1991, pages 377–396, Cortona, Italy, 1993, Cambridge Univ. Press.

    Google Scholar 

  37. Sturmfels, Bernd, “On the Newton Polytope of the Resultant,” Journal of Algebraic Combinatorics, 3: 207 – 236, 1994.

    Article  MATH  Google Scholar 

  38. Sturmfels, Bernd,Gröbner Bases and Convex Polytopes, Lectures presented at the Holiday Symposium at New Mexico State University, December 27 – 31, 1994.

    Google Scholar 

  39. Ziegler, Gunter M.,Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995.

    Google Scholar 

  40. Zippel, R.,Effective Polynomial Computation, Kluwer Academic Publishers, Boston, 1993.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rojas, J.M. (1997). Toric Laminations, Sparse Generalized Characteristic Polynomials, and a Refinement of Hubert’s Tenth Problem. In: Cucker, F., Shub, M. (eds) Foundations of Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60539-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60539-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61647-4

  • Online ISBN: 978-3-642-60539-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics