Skip to main content

Newton Iteration Towards a Cluster of Polynomial Zeros

  • Conference paper
Foundations of Computational Mathematics
  • 680 Accesses

Abstract

Let PC[z] be a polynomial which has a cluster of k zeros near v 0C. The coefficients of the factor F of P corresponding to this root cluster can be computed from the coefficients of P by Newton iteration in C k, applied to the mapping FP mod F.

This paper presents and analyzes a numerical algorithm based on this idea. The algorithm uses only polynomial multiplication and division. In particular, there is no need to solve linear systems.

The analysis results in an explicit quantitative condition for the coeficcients of P which guarantees the algorithm to converge when started with P 0 = (zv 0)k. Efficient test procedures for this condition are described. Finally, another starting value condition in terms of root sizes is proved and illustrated with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bini, D. and Pan, V.Polynomial and Matrix Computations, Volume 1: Fundamental Algorithms. Birkhäuser, Boston, 1994.

    Google Scholar 

  2. Friedman, J. On the convergence of Newton’s method.J. of Complexity 5(1989), 12 – 33.

    Article  MATH  Google Scholar 

  3. Gourdon, X. Algorithmique du théorème fondamental de l’algèbre. Rapport de Recherche 1852, INRIA, February 1993.

    Google Scholar 

  4. Gourdon, X., November 1995. Personal communication.

    Google Scholar 

  5. Grau, A. A. The simultaneous improvement of a complete set of approximate factors of a polynomial.SIAM J. Numer. Analysis 8(1971), 425 – 438.

    Article  MathSciNet  MATH  Google Scholar 

  6. Henrici, P.Applied and Computational Complex Analysis, vol.1. Wiley & Sons, New York, 1974.

    MATH  Google Scholar 

  7. Jenkins, M. A. and Traub, J. F. A three-stage variable-shift iteration for polynomial zeros and its relation to generalized rayleigh iteration.Numer. Math.14 (1970), 252 – 263.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kantorovich, L. and Akilov, G.Functional Analysis in Normed Spaces. MacMillan, New York, 1964.

    MATH  Google Scholar 

  9. Kim, M.-H. On approximate zeros and rootfinding algorithms for a complex polynomial.Math. Comp.51 (1988), 707 – 719.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kirrinnis, P.Zur Berechnung von Partialbruchzerlegungen und Kurvenintegralen rationaler Funktionen. Dissertation, Univ. Bonn, Institut für Informatik, January 1993.

    Google Scholar 

  11. Kirrinnis, P. Partial fraction decomposition in C(z) and simultaneous Newton iteration for factorization in C[z]. Preprint, Univ. Bonn. Submitted for publication, September 1995.

    Google Scholar 

  12. Lehmer, D. H. A machine method for solving polynomial equations.J. Assoc. Comput. Mach. 8(1961), 151 – 162.

    MATH  Google Scholar 

  13. Malajovich, G. and Zubelli, J. P. A fast and stable algorithm for splitting polynomials. Preprint, Dept. de Matematica Aplicada, Univ. Federal do Rio de Janeiro, January 1996.

    Google Scholar 

  14. Neff, C. A. and Reif, J. H. An 0(n1+e logb) algorithm for the complex root problem. InProc. 35th Ann. IEEE Symp. on Foundations of Computer Science(1994), pp. 540 – 547.

    Google Scholar 

  15. Pan, V. Y. Sequential and parallel complexity of approximate evaluation of polynomial zeros.Comput. Math. Appl. 14(1987), 591 – 622.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pan, V. Y. New techniques for approximating complex polynomial zeros. InProc. 5th Ann. ACM-SIAM Symp. on Discrete Algorithms(1994), pp. 260 – 270.

    Google Scholar 

  17. Pan, V. Y. Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros. InProc. 27th Ann. ACM Symp. on the Theory of Computing (STOC’95)(1995), pp. 741 – 750.

    Google Scholar 

  18. Renegar, J. On the cost of approximating all roots of a complex polynomial.Math. Programming 32(1985), 319 – 336.

    Article  MathSciNet  MATH  Google Scholar 

  19. Renegar, J. On the worst-case complexity of approximating zeros of polynomials.J. of Complexity 3(1987), 90 – 113.

    Article  MathSciNet  MATH  Google Scholar 

  20. Schänhage, A. Asymptotically fast algorithms for the numerical multiplication and division of polynomials with complex coefficients. InComputer Algebra EU-ROCAM ’82 (Marseille 1982) (1982), J. Calmet, Ed., vol. 144 ofSpringer Lect. Notes in Computer Science, Springer, pp. 3–15.

    Google Scholar 

  21. Schönhage, A. The fundamental theorem of algebra in terms of computational complexity. Tech. rep., Univ. Tübingen, 1982.

    Google Scholar 

  22. Schönhage, A. Equation solving in terms of computational complexity. InProc. Int. Congress of Mathematicians, Berkeley, CA(1986), pp. 131 – 153.

    Google Scholar 

  23. Schönhage, A. Ordinary root finding. Preprint, Univ. Bonn, January 1996.

    Google Scholar 

  24. Schönhage, A., Grotefeld, A. F. W., and Vetter, E.Fast Algorithms: A Multitape Turing Machine Implementation. B.I. Wissenschafts verlag, Mannheim, 1994.

    MATH  Google Scholar 

  25. Shub, M. and Smale, S. Computational complexity: On the geometry of polynomials and a theory of cost: Part I.Ann. scient. Ec. Norm. Sup., 4e série 18(1985), 107 – 142.

    MathSciNet  MATH  Google Scholar 

  26. Shub, M. and smale, S. Computational complexity: On the geometry of polynomials and a theory of cost: II.SIAM J. Comput. 15(1986), 145 – 161.

    Article  MathSciNet  MATH  Google Scholar 

  27. .Smale, S. The fundamental theorem of algebra and complexity theory. Bull. (New Series)Amer. Math. Soc.4(1981), 1 – 36.

    Article  MathSciNet  MATH  Google Scholar 

  28. Smale, S. Newton’s method estimates from data at one point. InThe Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics(1985), R. E. Ewing, K. I. Gross, and C. F. Martin, Eds., Springer, pp. 185 – 196.

    Google Scholar 

  29. Smale, S. On the efficiency of algorithms of analysis.Bull. (New Series) Amer. Math. Soc. 13(1985), 87 – 121.

    Article  MathSciNet  MATH  Google Scholar 

  30. Smale, S. Algorithms for solving equations. InProc. Int. Congress of Mathematicians, Berkeley, CA(1986), pp. 172 – 195.

    Google Scholar 

  31. Weyl, H. Randbemerkungen zu Hauptproblemen der Mathematik. II. Fundamentalsatz der Algebra und Grundlagen der Mathematik.Math. Zeitschr. 20(1924), 142 – 150.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirrinnis, P. (1997). Newton Iteration Towards a Cluster of Polynomial Zeros. In: Cucker, F., Shub, M. (eds) Foundations of Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60539-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60539-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61647-4

  • Online ISBN: 978-3-642-60539-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics