Skip to main content

Abstract

In contrast to ultrasonography (color Doppler) and magnetic resonance angiography (MRA), which are both possible without the use of contrast agents, radiography (angiography, digital substraction angiography, computed tomography) needs contrast enhancement of the vessel lumen to visualize blood vessels. As early as 1895, shortly after W.C. Röntgen’s discovery of X-rays, it became evident that contrast could be increased by using elements with high atomic numbers such as barium, bismuth, and lead [1]. Iodine and bromine were also discovered as suitable contrast-giving elements. Sodium and lithium iodide and strontium bromide were the first water-soluble contrast media [2]. Iodine was identified as especially suitable and has therefore been used exclusively as the X-ray absorbing atom in water-soluble contrast agents until the present day. The blood concentration of iodine necessary for adequate contrast enhancement has to be greater than 1 mg/ml in computed tomography (CT) and 10–100 mg/ml in projection radiography, depending on vessel diameter and location and radiological technique. Accordingly, the doses which have to be administered in cardiovascular radiography are the highest used in any field of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haschek E, Lindenthal TO (1896) Ein Beitrag zur prak-tischen Verwertung der Photographie nach Röntgen. Wien Klin Wochenschr 9: 63–64.

    Google Scholar 

  2. Osborne ED, Sutherland CG, Scholl AF, Rowntree LG (1923) Roentgenography of urinary tract during excretion of sodium iodide. JAMA 80: 368–373.

    CAS  Google Scholar 

  3. Binz A, Rath A, von Lichtenberg A (1931) The chemistry of Uroselectan. Z Urol 25: 297–301.

    CAS  Google Scholar 

  4. Wallingford VH (1953) The development of organic iodide compounds compounds as X-ray contrast media. J Am Pharm Assoc Sei Ed 42: 721–728.

    Article  CAS  Google Scholar 

  5. Langecker H, Harwart A, Junkmann K (1954) 3,5-Dia- cetylamino-2,4,6-triiodbenzoesäure als Röntgenkontrastmittel. Nauny Schmiedebergs Arch Exp Pathol 222: 584–590.

    CAS  Google Scholar 

  6. Hoppe JO, Larsen HA, Coulston FJ (1956) Observation on the toxicity of a new Urographie contrast medium, sodium 3,5-diacetamno-2,4,6-triiodobenzoate (Hypaque sodium). J Pharmacol Exp Ther 116: 394–403.

    PubMed  CAS  Google Scholar 

  7. Almen T (1969) Contrast agent design. Some aspects on the synthesis of water-soluble agents of low osmolality. JTheor Biol 24:216–226.

    CAS  Google Scholar 

  8. Morris TW, Sahler LG, Fischer HW (1982) Calcium binding by radiopaque media. Invest Radiol 17: 501–505.

    Article  PubMed  CAS  Google Scholar 

  9. Piao ZE, Murdock DK, Hwang MH, Raymond RM, Scanion PJ (1988) Contrast media induced ventricular fibrillation: a comparison of Hypaque-76, Hexabrix and Omnipaque. Invest Radiol 23: 466–470.

    Article  PubMed  CAS  Google Scholar 

  10. Missri J, Jeresaty RM (1990) Ventricular fibrillation during coronary angiography: reduced incidence with nonionic contrast media. Cathet Cardiovasc Diagn 19: 4–7.

    Article  PubMed  CAS  Google Scholar 

  11. Krause W, Miklautz H, Kollenkirchen U, Heimann G (1993) Physicochemical parameters of X-ray contrast media. Invest Radiol 29: 72–80.

    Article  Google Scholar 

  12. Higgins CB (1985) Cardiotolerance of iohexol, a survey of experimental evidence. Invest Radiol 20: 565–569.

    Article  Google Scholar 

  13. Bettmann MA, Bourdillon PD, Bary WH, Brush KA, Levin DC (1984) Contrast agents for cardiac angiography: effects of a nonionic agent vs. a standard agent. Radiology 153: 583–587.

    PubMed  CAS  Google Scholar 

  14. Gertz KW, Wisneski JA, Chiu D, Akin JR, Hu C (1985) Clinical superiority of a new nonionic contrast agent (iopamidol) for cardiac angiography. J Am Coll Cardiol 5: 250–258.

    Article  PubMed  CAS  Google Scholar 

  15. Gerber KH, Higgins CB, Yuh YS, Koziol JA (1982) Regional myocardial hemodynamic and metabolic effects of ionic and nonionic contrast media in normal and ischemic stetes. Circulation 65: 1307–1314.

    Article  PubMed  CAS  Google Scholar 

  16. Bashore TM, Davidson CJ, Mark DB (1988) Iopamidol use in the cardiac catheterization laboratory: a retrospective analysis of 3313 patients. CARDIO 5: 4–10.

    Google Scholar 

  17. Thomson KR, Evill CA, Fritzsche J, Benness GT (1980) Comparison of iopamidol, ioxaglate and diatrizoate during coronary arteriography in dogs. Invest Radiol 15: 234–241.

    Article  PubMed  CAS  Google Scholar 

  18. Hartwig P, Mützel W, Taenzer V (1989) Pharmacokine-tics of iohexol, iopamidol, iopromide, and iosimide compared with meglumine diatrizoate. In: Taenzer V, Wende S (eds) Recent developments in nonionic contrast media. Thieme, Stuttgart, pp 220–223.

    Google Scholar 

  19. Feldman S, Hayman A, Hülse M (1984) Pharmacokinetics of low- and high-dose intravenous diatrizoate contrast media administration. Invest Radiol 19: 54.

    Article  PubMed  CAS  Google Scholar 

  20. Wang YCJ (1980) Deiodination kinetics of water-soluble radiopaques. J Pharm Sei 69: 671–675.

    Article  CAS  Google Scholar 

  21. Zurth C (1984) Mechanism of renal excretion of various X-ray contrast materials in rabbits. Invest Radiol 19: 110.

    Article  PubMed  CAS  Google Scholar 

  22. Almen T, Bergquist D, Frennby B, Hellsten S, Lilja B, Nyman U, Sterner G, Tornquist C (1991) Use of Urographic contrast media to determine glomerular filtration rate of each kidney with computed tomography and scintigraphy. Invest Radiol 26: S72–S74.

    PubMed  Google Scholar 

  23. Effersoe H, Rosenkilde R, Groth S (1990) Measurement of renal function with iohexol or a comparison of iohexol, 99mTc-DTPA, and 51Cr-EDTA clearance. Invest Radiol 25: 778–782.

    Article  PubMed  CAS  Google Scholar 

  24. Corradi A, Menta R, Cambi V (1990) Pharmacokinetics of iopamidol in adults with renal failure. Arzneimittelforschung 40: 830–832.

    PubMed  CAS  Google Scholar 

  25. Waaler A, Svaland M, Fauchald P (1990) Elimination of iohexol, a low osmolar nonionic contrast medium, by hemodialysis in patients with chronic renal failure. Nephron 56:81–85.

    Article  PubMed  CAS  Google Scholar 

  26. Scherbach JE, Kollath J, Riemann HE (1991) Unerwünschte Kontrastmittelwirkungen an der Niere. In: Peters PE, Zeitler E (eds) Röntgenkontrastmittel - Nebenwirkungen, Prophylaxe, Therapie. Springer, Berlin Heidelberg New York, pp 65–69.

    Google Scholar 

  27. Skalpe IO (1993) Clinical use of iodinated media for the visualization of vessels, organs and organ systems. In: Dawson P, Clauss W (eds) Contrast media in practice. Springer, Berlin Heidelberg New York, pp 119–121.

    Google Scholar 

  28. Latchaw RE (1993) The use of nonionic contrast agents in neuroangiography. A review of the literature and recommendations for clinical use. Invest Radiol 28: S55–S59.

    Google Scholar 

  29. Romaniuk P (1993) Angiography and thoracic aortography. In: Dawson P, Clauss W (eds) Contrast media in practice. Springer, Berlin Heidelberg New York, pp 144–161.

    Google Scholar 

  30. Johnson LW, Lozner EC, Johnson S (1989) Coronary areriography 1984–1987: a report of the registry of the Society for Cardiac Angiography and Intervention. Cathet Cardiovasc Diagn 17: 5–10.

    Article  PubMed  CAS  Google Scholar 

  31. Rödl W (1993) Angiographic procedures for the liver, spleen, pancreas and portal venous system. In: Dawson P, Clauss W (eds) Contrast media in practice. Springer, Berlin Heidelberg New York, pp 161–169.

    Google Scholar 

  32. Hagen B (1993) Phlebography. In: Dawson P, Clauss W (eds) Contrast media in practice. Springer, Berlin Heidelberg New York, pp 133–138.

    Google Scholar 

  33. Katayama H, Yamaguchi K, Kozuka T, Takashima T, Seez P, Matsuura K (1990) Adverse reactions to ionic and nonionic and nonionic contrast media: a report from the Japanese Committee on the safety of contrast media. Radiology 175: 621.

    PubMed  CAS  Google Scholar 

  34. Hirshfeld JW Jr, Laskey W, Martin JL, Groh WC, Untereker W, Wolf GL (1983) Hemodynamic changes included by cardiac angiography with ioxaglate: comparison with diatrizoate. Am J Cardiol 2: 954–957.

    Article  Google Scholar 

  35. Feldman RL, Jalowiec DA, Hill JA, Lambert CR (1988) Contrast-media related complications during cardiac catheterization using Hexabrix or Renografin in high risk patients. Am J Cardiol 61:1334–1337.

    Article  PubMed  CAS  Google Scholar 

  36. Johnson LW, Lozner EC, Johnson S (1989) Coronary arteriography 1984–1987: a report of the Registry of the Society for Cardiac Angiography and Intervention. I. Results and complications. Cathet Cardiovasc Diagn 17:5–10.

    Article  CAS  Google Scholar 

  37. Friesinger GC, Schaffer J, Criley JM, Gaertner RA, Ross RS (1965) Hemodynamic consequences of the injection of radiopaque material. Circulation 31: 730–740.

    PubMed  CAS  Google Scholar 

  38. Vine DL, Hegg TD, Dodge HT, Stewart DK, Frimer M (1977) Immediate effect of contrast medium injection on left ventricular volumes and ejection fraction. Circulation 56:379–384.

    PubMed  CAS  Google Scholar 

  39. Bettmann MA (1982) Angiographic contrast agents: conventional and new media compared. AJR 139: 787–794.

    PubMed  CAS  Google Scholar 

  40. Cohan RH, Dunnick NR (1987) Intravascular contrast media: adverse reactions. AJR 149: 665.

    CAS  Google Scholar 

  41. Hagen B, Klink G (1983) Contrast media and pain: hypotheses on the genesis of pain occurring on intra-arterial administration of contrast media. In: Taenzer V, Zeitler E (eds) Contrast media in urography, angiography and computerized tomography, Thieme, Stuttgart, pp 50–56.

    Google Scholar 

  42. Hirshfeld J, Kussmaul K, Diabattiste P (1990) Safety of cardiac angiography with conventional ionic contrast agents. Am J Cardiol 66: 355–361.

    Article  PubMed  Google Scholar 

  43. Davidson C, Mark D, Pieper K (1990) Thrombotic and cardiovascular complications related to nonionic contrast media during cardia catheterization: analysis of 8517 patients. Am J Cardiol 65: 1481–1484.

    Article  PubMed  CAS  Google Scholar 

  44. Wisneski JA, Gertz KW, Dahigren M, Muslin A (1989) Comparison of low-osmolality ionic (ioxaglate) versus nonionic (iopamidol) contrast media in cardiac angiography. Am J Cardiol 63: 489–495.

    Article  PubMed  CAS  Google Scholar 

  45. Klinke WP, Grace M, Miller R, Naqvi SZ, Roth D, Roy L (1989) A multicenter randomized trial of ionic (ioxaglate) and nonionic (iopamidol) low-osmolality contrast agents in cardiac angiography. Clin Cardiol 12:689–696.

    Article  PubMed  CAS  Google Scholar 

  46. Barrett BJ, Parfrey PS, Vavasour HM (1992) A comparison of nonionic, low-osmolality radiocontrast agents with ionic, high-osmolality agents during cardiac catheterization. N Engl J Med 326: 431–436.

    Article  PubMed  CAS  Google Scholar 

  47. Muschick P, Wehrmann D, Schuhmann-Giampieri G, Krause W (1994) Cardiac and haemodynamic tolerability of different X-ray contrast media in the anaesthetized rat. Cardiovasc Intervent Radiol 17 Suppl 2: S125.

    Google Scholar 

  48. Morris TW (1993) The physiologic effects of nonionic contrast media on the heart. Invest Radiol 28: S44–S46.

    Article  PubMed  Google Scholar 

  49. Klopp R, Niemer W, Schippel W (191) Kontrastmittelwirkungen auf die Fliessbedingungen der Mikrozirkulation (tierexperimentelle Studie). In: Peters PE, Zeitler E (eds) Röntgenkonstrastmittel: Nebenwirkungen, Prophylaxe, Therapie. Springer, Berlin Heidelberg New York, pp 52–64.

    Google Scholar 

  50. Klopp R, Niemer W, Schippel W, Münster W, (1992) Veränderungen der intestinalen und myocardialen Mikrozirkulation nach Applikation verschiedener Röntgenkontrastmittel. In: Richter K (ed)Digitale und interventionelle Radiologie bei Herz- und Gefäßer-krankungen. Blackwell, Berlin pp 192–196.

    Google Scholar 

  51. Strickland NH, Rampling MW, Dawson P, Martin G (1992) Contrast-media induced effects on blood rheology and their importance in angiography. Clin Radiol 45: 240–242.

    Article  PubMed  CAS  Google Scholar 

  52. Klopp R, Niemer W, Schippel W, Krause W (1994) Changes in the microcirculation of the intact rat heart after iodinated and Gd-containing contrast agents. Cardiovasc Interven Radiol 17 Suppl 2: S123.

    Google Scholar 

  53. Stommorken H, Skalpe IO, Testart MC (1986) Effect of various contrast media on coagulation, fibrinolysis, and platelet function: an in vitro and in vivo study. Invest Radiol 21: 348–154.

    Article  Google Scholar 

  54. Robertson HJF (1987) Blood clot formation in angio-graphic syringes containing nonionic contrast media. Radiology 163:621–622.

    Google Scholar 

  55. Gabriel DA, Jones MR, Reece NS (1991) Platelet and fibrin modification by radiographic contast media. Circ Res 68: 881–887.

    PubMed  CAS  Google Scholar 

  56. Dawson P, Hewitt P, Mackie IJ (1986) Contrast, coagulation, and fibrinolysis. Invest Radiol 21: 248–252.

    Article  PubMed  CAS  Google Scholar 

  57. Grollman JH Jr, Liu CK, Astone RA, Lurie MD (1988) Thromboembolic complications in coronary angiography associated with the use of nonionic contrast medium. Cathet Cardiovasc Diagn 14: 159–164.

    Article  PubMed  Google Scholar 

  58. Au PK (1991) Nonionic contast media and intracatheter clot formation during use of a perfusion balloon catheter. Cathet Cardiovasc Diagn 22: 235–236.

    Article  PubMed  CAS  Google Scholar 

  59. Davidson CJ, Mark DB, Pieper KS (1990) Thrombotic and cardiovascular complications related to nonionic contrast media during cardiac catheterization: analysis of 8517 patients. Am J Cardiol 65: 1481–1484.

    Article  PubMed  CAS  Google Scholar 

  60. Hwang MH, En Piano A, Murdock DK (1989) The potential risk of thrombosis during coronary angiography using nonionic contrast media. Cathet Cardiovasc Diagn 16:209–213.

    Article  PubMed  CAS  Google Scholar 

  61. Krause W (1994) Preclinical characterization of iopromide. Invest Radiol 29 Supl 1: S21–S32.

    Article  Google Scholar 

  62. Wilson AJ, Evill CA, Sage MR (1991) Effects of nonionic contrast media on the blood-brain barrier. Osmolality versus chemotoxicity. Invest Radiol 26: 1091–1094.

    Article  CAS  Google Scholar 

  63. Nakstad PH (1989) The reaction of cerebral arteries to non-ionic contrast media during cerebral angiography. Neuroradiology 31: 247–249.

    Article  PubMed  CAS  Google Scholar 

  64. Du Boulay GH, Wallis A (1986) Cerebral arterial constriction due to contrast media. Acta Radiol Suppl (Stockh) 369:518–520.

    Google Scholar 

  65. Bien S (1995) Iotrolan, a non-ionic dimeric contrast agent in cerebral angiography. Eur Radiol 5: S45–S48.

    Article  Google Scholar 

  66. Hou SH, Bushinski DA, Wish JB, Cohan JJ, Harrington JT (1983) Hospital-acquired renal insufficiency: a prospective study. Am J Med 74: 243–248.

    Article  PubMed  CAS  Google Scholar 

  67. Byrd L, Sherman RL (1979) Radiocontrast-induced acute renal failure. A clinical and pathophysiologic review. Medicine (Baltimore) 58: 270–279.

    Article  CAS  Google Scholar 

  68. Diaz-Buxo JA, Wagoner RD, Hattery RR, Palumbo PJ (1975) Acute renal failure after excretory urography in diabetic patients. Ann Intern Med 83: 155–158.

    PubMed  CAS  Google Scholar 

  69. Port KF, Wagoner RD, Fulter RE (1974) Acute renal failure after angiography. Am J Radiol 121: 544–550.

    CAS  Google Scholar 

  70. Mason RA, Arbeit LA, Givon F (1985) Renal dysfunction after arteriography. JAMA 253: 1001–1004.

    Article  PubMed  CAS  Google Scholar 

  71. D’Elia JA, Glenson RE, Arday W, Malarick C, Godfrey K, War ran J (1982) Nephrotoxicity from angiographic contrast material. A prospective study. Am J Med 72:719–725.

    Google Scholar 

  72. Temel JL, Marcer R, Onaindia JM, Serano A, Quereda C, Ortuno J (1981) Renal function impairment caused by intravenous urography. Arch Intern Med 72: 719–725.

    Google Scholar 

  73. Taliercio CP, Vlietstra RE, Ilstrup DM (1991) A randomized comparison of the nephrotoxicity of iopamidol and diatrizoate in high risk patients undergoing cardiac angiography. J Am Coll Cardiol 17: 384–90.

    Article  PubMed  CAS  Google Scholar 

  74. Hill JA, Winniford M, Van Fossen DR (1991) Nephrotoxicity following cardiac angiography: a randomized double-blind multicenter trial of ionic and nonionic contrast media in 1194 patients. Circulation 84 Suppl 2: 333.

    Google Scholar 

  75. Rich MW, Crecelius CA (1990) Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age or older: a prospective study. Arch Intern Med 150: 1237–1242.

    Article  PubMed  CAS  Google Scholar 

  76. Porter GA (1993) Effects of contrast agents on renal function. Invest Radiol 28: S1–S5.

    Article  Google Scholar 

  77. Deray G, Martinez F, Cacoub P, Baumelou B, Baumelou A, Jacobs C (1990) A role for adenosine, calcium, and ischemia in radiocontrast-induced intrarenal vasoconstriction. Am J Nephrol 10: 316–322.

    Article  PubMed  CAS  Google Scholar 

  78. Lasser EC, Lamkin GE (1994) Is there a role for nitric oxide in contrast material toxicity? Invest Radiol 29 Suppl 29: S102–104.

    Article  Google Scholar 

  79. Talner LB, Rushman HN, Cael MN (1972) The effect of renal artery injections of contrast material on urinary enzyme excretion. Invest Radiol 7: 311–322.

    Article  PubMed  CAS  Google Scholar 

  80. Thomsen HS, Golman K, Hemmingsen L, Larsen HA, Skaarup P, Svendson O (1993) Contrast media-induced nephropathy: animal experiments. Front Eur Radiol 9: 83–108.

    Google Scholar 

  81. Parvez Z, Rhamamursky S, Patel NB, Moncada R (1990) Enzyme markers of contrast media-induced renal failure. Invest Radiol 25: S133–134.

    Article  PubMed  Google Scholar 

  82. Berns JS, Rudnick MR (1992) Radiocontrast media associated nephrotoxicity. Kidney 24: 1–5.

    Google Scholar 

  83. Clauß W, Dinger J, Meißner C (1995) Renai tolerance of iotrolan 280 in European clinical studies. Eur Radiol 5: S79–S84.

    Article  Google Scholar 

  84. Fischer HW, Doust VL (1971) An evaluation of pretesting in the problem of serious and fatal reactions to excretory urography. Radiology 103: 497.

    Google Scholar 

  85. Leonello PP, Frewin DB, Russell WJ, Gilligan JE, Jolley PT (1980) Adverse reactions to radiographic contrast media administered by the intravascular route. Aust Radiol 24: 311.

    Article  CAS  Google Scholar 

  86. Lasser EC, Lang J, Sovak M, Kolb W, Lyon S, Hamlin E (1977) Steroids: theoretical and experimental basis for utilization in prevention of contrast media reactions. Radiology 125: 1.

    PubMed  CAS  Google Scholar 

  87. Greenberger PA (1987) Clinical studies on the pretreatment of high risk patients submitted to contrast media procedures. In: Parvez Z (ed) Contrast media. CRC Press, Boca Raton, p 165.

    Google Scholar 

  88. Gertz KW, Wisneski JA, Miller R (1992) Adverse reactions of low osmolality contrast media during cardiac angiography: a prospective randomized multicenter study. J Am Coll Cardiol 19: 899–906.

    Article  PubMed  CAS  Google Scholar 

  89. Pendergrass HP, Tondreau RL, Pendergrass KP, Ritchie DJ, Hildreth EA, Askovitz SI (1958) Reactions associated with intravenous urography. Historical and statistical prview. Radiology 71:1.

    CAS  Google Scholar 

  90. Coleman WP, Ochsner SF, Watson BE (1964) Allergic reactions in 10 000 consecutive intravenous urographies. South Med J 57: 1401.

    Article  PubMed  CAS  Google Scholar 

  91. Toniolo G, Buia L (1966) Risultati di una inchiesta na- ziorale sugli incidenti mortali da inizione di mezzi di contrasto organo-iodati. Radiol Med 2: 625.

    Google Scholar 

  92. Wolfromm R, Dehouve A, Degand F, Wattez E, Lange R, Crehalet A (1966) Les accidents graves per injection intraveineuse de substances iodees pour Urographie. J Radiol Electrol 47: 346.

    PubMed  CAS  Google Scholar 

  93. Witten DM, Hirsch FD, Hartman GW (1973) Acute reactions to Urographie contrast medium. AJR 119: 832.

    CAS  Google Scholar 

  94. Davies P, Roberts MB, Roylance J (1975) Acute reac-tions to Urographie contrast media. Br Med J 2: 434.

    Article  PubMed  CAS  Google Scholar 

  95. Shehadi WH, Toniolo G (1980) Adverse reactions to contrast media. Radiology 137: 299.

    CAS  Google Scholar 

  96. Ansell G, Tweedie MCK, West CR, Evans P, Couch L (1980) The current status of reactions to intravenous contrast media. Invest Radiol 15: S32.

    Article  PubMed  CAS  Google Scholar 

  97. Hobbs BB (1981) Adverse reactions to intravenous contrast agents in Ontario 1975–1989. J Can Assoc Radiol 32: 8.

    PubMed  CAS  Google Scholar 

  98. Pinet A, Lyonnet D, Maillet P, Groleau JM (1982) Ad-verse reactions to intravenous contrast media in urography - results of national survey. In: Amiel (ed) Contrast media in radiology. Brikhäuser, Basel, p 14.

    Google Scholar 

  99. Michel JR (1982) Prevention of shocks induced by intravenous urography. In: Amiel (ed) Contrast media in radiology. Birkhäuser, Basel, p 11.

    Google Scholar 

  100. Hartman GW, Hattery R, Witten DM (1982) Mortality during excretory urography: Mayo Clinic experience. AJR 139: 919.

    PubMed  CAS  Google Scholar 

  101. Schrott KM, Behrends B, Clauß W, Kaufmann M, Lehnert J (1986) Iohexol in der Ausscheidungsurographie. Fortschr Med 104: 153.

    CAS  Google Scholar 

  102. Lasser EC, Berry CC, Talner LB (1987) Pretreatment with corticosteroids to alleviate reactions to intravenous contrast material: a randomized multi-institutional study. N Engl J Med 317: 845.

    Article  PubMed  CAS  Google Scholar 

  103. Palmer FJ (1988) The RACR survey of intravenous contrast media reactions - final report. Aust Radiol 32: 426.

    Article  CAS  Google Scholar 

  104. Wolf GL, Arenson RL, Cross AP (1989) A prospective trial of ionic vs nonionic contrast agents in routine clinical practice: comparison of adverse effects. AJR 152:939.

    PubMed  CAS  Google Scholar 

  105. Ritchie JL, Nissen SE, Douglas JS et al. (1993) Use of nonionic or low osmolar contrast agents in cardiovascular procedures. J Am Coll Cardiol 21: 269–273.

    Article  PubMed  CAS  Google Scholar 

  106. Bettmann MA (1989) Guidelines for use of low-osmolality contrast agents. Radiology 172: 901–903.

    PubMed  CAS  Google Scholar 

  107. Benness GT (1988) Guidelines revisited. Australas Radiol 32: 424–425.

    Article  PubMed  CAS  Google Scholar 

  108. Siegle RL (1992) Contrast reactions, treatment and risk management. Refresher course #317, RSNA’92. Radiology 185: 57.

    Google Scholar 

  109. Dix WR (1995) Intravenous coronary angiography with synchrotron radiation. Prog Biophys Mol Biol 63: 159–191.

    Article  PubMed  CAS  Google Scholar 

  110. Clausen C, Lochner B (1983) Dynamische Computer-tomographie. Springer, Berlin Heidelberg New York, p 39.

    Google Scholar 

  111. Heinzel G, Woloszczak R, Thomann P(1993)Topfit2.0 Pharmacokinetic and pharamcodynamic data analysis system for the PC. Fischer, Stuttgart.

    Google Scholar 

  112. Steinberg KP, Moore RD, Powe NR (1992) Safety and cost effectiveness of high-osmolality as compared with low-osmolality contrast material in patients undergging cardiac catheterization, N Engl J Med 326: 425–430.

    Article  PubMed  CAS  Google Scholar 

  113. Cohen MB, van Fossen DB, Murphy MH, Halpern E (1992) Adverse events following cardiac angiography: a randomized double-blind multicentre trial of ionic and nonionic contrast media. Cathet Cardio Vase Diagn 26: 74.

    Google Scholar 

  114. Gasperetti CM, Feldmann MO, Burwell LR (1991) In-fluence of contrast media on thrombus formation during coronary angioplasty. J Am Coll Cardiol 173: 443–450.

    Article  Google Scholar 

  115. Lembo NJ, King SB, Roubin GS, Black AJ, Douglas JS (1991) Effects of nonionic versus ionic contrast media on complications of percutaneous transluminal coronary angioplasty. Am J Cardiol 67: 1040–1050.

    Article  Google Scholar 

  116. Esplugas E, Esquier A, Jara F (1991) Risk of thrombosis during coronary angioplasty with low osmolar contrast media. Am J Cardiol 68: 1020–1024.

    Article  PubMed  CAS  Google Scholar 

  117. Piessens JH, Stammen F, Vrolix MC (1993) Effects of an ionic versus a nonionic low osmolar contrast agent on the thrombotic complications of coronary angioplasty. Cathet Cardiovasc Diagn 28: 99–105.

    Article  PubMed  CAS  Google Scholar 

  118. Cronquist S (1982) Iohexol in cerebral angiography. Survey and present state. Acta Radiol Suppl 366: 135–139.

    Google Scholar 

  119. Sumie H, Kateyama H (1993) Iotrolan in cerebral angiography: a Japanese phase III multicenter comparative study with iopamidol. Eur Radiol 5: S39–S44.

    Article  Google Scholar 

  120. Enge IP (1993) Safety of nonionic agents in visceral angiography. Invest Radiol 28: 539–542.

    Article  Google Scholar 

  121. Hori S (1995) A Japanese phase II multicenter compa-rison of iotrolan 280 with iopamidol 33 in peripheral arteriography. Eur Radiol 5: S24–S29.

    Article  Google Scholar 

  122. Gmeinwieser JK, Wenzel-Hora BI (1995) Peripheral and pendle angiography with iotrolan 280 versus non-ionic monomers: results of the European clinical phase II and II trials. Eur Radiol A 530–S38.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krause, W. (1997). X-ray Contrast Agents. In: Lanzer, P., Lipton, M. (eds) Diagnostics of Vascular Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60512-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60512-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64437-5

  • Online ISBN: 978-3-642-60512-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics